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Abstract—In this work, we used implicit ratings and an
auto-encoder with a modified cost function to make a GitHub
Recommender System. First, we collect the data, construct the
confidence and prediction matrices based on implicit rating
schemes. Finally, we train an auto-encoder with a modified cost
function and test the trained model using Recall metric.
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I. INTRODUCTION

GitHub is a popular development platform where develop-
ers showcase their source codes by uploading it to a repository.
This platform offers distributed version control and source
code management functionality of Git. Every user who wishes
start a new project makes a new repository. Other users, can :

• Watch a repository - user gets notifications about
changes made (if any) to the watched repository.

• Star a repository - A way to “like” the repository.

• Fork - to extend/fix bugs in the current source code
(shows user’s interest in the same type of repositories).

• Follow another user - the follower gets notifications
about user’s public actions.

Collaborative Filtering is commonly used for suggesting
movies, songs etc. to users (based on prediction of a user’s
rating). We noticed that GitHub has no method to suggest
repositories to a user and thus, decided to build one as our
course project. The idea to recommend users a repository that
he/she would like to contribute to, and thus, leading to the
growth open source coding culture, highly motivated us.

II. DATA CURATION

There is no existing dataset available for our purpose, so
we wrote scripts to extract the following features using the
Github API-v3.

• Users

• Repositories

• Languages - Repository and User Feature

• Forks - Repository Feature

• Stars - Repository Feature

• Watchers - Repository Feature

• Users following - User Feature

• User followers - User Feature

The data - comprising of more than 10K users and 300K
repositories - was collected and stored into a MongoDB
database. For this project we used a subset of this dataset - a
pool of 1000 users and 1000 repositories.

III. METHODOLOGY

We used, user-item interactions like stars, forks, watchers,
user-followers, user-following and languages matched, as a
proxy to indicate user’s preference for a particular repository.
If a user has starred, forked or watched a repository, it indicates
his/her interest towards the same. However, we have no metric
which depicts a user’s disliking for a repository. This kind of
indirect information about user-item preferences is known as
implicit feedback.

We then used the data collected to construct a user * item
confidence matrix ‘C’, where in the value at Ci,j is calculated
by taking a weighted sum of the collected implicit features of
a user ‘i’ and a repository ‘j’. Since the confidence matrix
comprises of non-negative values we used it to construct a
preference matrix ‘P ’ with values ∈ {0, 1} at it’s indices .

We modified the cost function used in the auto-encoder
approach of solving collaborative filtering problems (latent
factor model)[1], as explained below.

Given a set S of vectors in Rd, and some number of
hidden layer nodes = k ∈ N+, an auto-encoder solves

min
θ

∑
r∈S
||r − h(r; θ)||22

where h(r; θ) is the reconstruction of the input r ∈ Rd, defined
as :

h(r; θ) = f(W.g(V r + µ) + b)

where, f(.), g(.) are activation functions of the hidden layers
of the auto-encoder and θ = {W,V, µ, b}; for encoder matrix
W ∈ Rd∗k, decoder matrix V ∈ Rk∗d, and biases µ ∈ Rk, b ∈
Rd. This objective function corresponds to an auto-associative
neural network with a single k-dimensional hidden layer. The
minimization parameters θ are learned using the standard back-
propagration algorithm.

We used the user-based auto-encoder described in [1] to
train on our model. Firstly, each ri in the training dataset is
partially observed, thus we only update the observed indices
in ri while back-propagating. Secondly, we regularize the
learned parameters to prevent over-fitting on the observed
ratings. Formally, the objective function for the user-based
model is as follows :
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Fig. 1: Recall vs Hidden Layers

minθ
∑
u ‖cu‖2‖ (pu − h(ru; θ)) ‖2O + λ

2

(∑
u ‖W‖2F +

∑
i ‖V ‖2F

)
– (1)

where, cu = Confidence vector of user u,
pu = Preference vector of user u,
||.||O means, we consider the contributions

of only the observed ratings.
Once the model is trained then we can predict the preference
matrix R as follows:

Ru,i = (h(ru; θ))i

Clearly, Ru,i ∈ {0, 1}, where, if Ru,i = 1, user u would
supposedly like the repository i.

IV. RESULTS

To test our model we do an 80:20 split of the data where
Pu,i = 1 to get the test and train data respectively. We choose
our test and train data this manner since, we are dealing
with implicit ratings and hence do not have any negative
feedback/dislike information.

To compare the prediction accuracy the standard metric
of recall is used. Recall gives us the probability of a relevant
repository being selected for recommendation. Mathematically,

Recall =
tp

tp + fn

where tp = number of true positives
fp = number of false negatives

Many studies report results using one of the following
metrics : MAE (Mean Absolute Error), RMSE (Root Mean
Squared Error), NMAE (Normalized Mean Absolute Error)
between the predicted and the ground truth values. But, using
one of these metrics for testing the trained model does not
make sense when one is dealing with implicit ratings because
the predictions and the ground truth values belong to {0, 1}
which is a small set. Thus, the above mentioned metrics would
also be small and would not give us the correct quantitative
measure of the model’s performance.

Precision is another information retrieval metric defined as
follows,

Precision =
tp

tp + fp

where tp = number of true positives
fn = number of false positives

Since, our test dataset does not contain any negative feedbacks
thus, there are no false positives. This renders the use of this
metric as meaningless.

Hyper-parameter Tuning :

• We did a grid search on the following hyper-
parameters:
◦ Regularization Strength (λ) over the set
{0.001, 0.01, 0.1} and got best results for
λbest = 0.01



◦ Number of nodes in hidden layer (k) over the
set {10, 20, 40, 80, 100}. Figure 1 shows that
as we increase the hidden layer nodes from 40
to 80 nodes the model performs better, after 80
hidden layer nodes the recall value converges
depicting 80 being the best number of hidden
layer nodes.

• RMSProp optimizer was used to minimize the loss
function as described in equation (1).

• We tested the trained model for both sigmoid and
ReLU hidden layer activation functions. The model
with hidden layer activation functions being the sig-
moid function performed the best.

V. FUTURE WORK

• Currently, we trained on our model on a 1000 x 1000
subset of the original 10K x 300K data collected. In
the near future we plan on training on the entire dataset
to get a better understanding of the trained model.

• The auto-encoder model trained presently, has a single
hidden layer. We could stack multiple hidden layers i.e
Stacked De-noising Auto-encoders(SdA) and report
it’s effect on the performance of the model.

• We can even try an item-based auto-encoder model
and report it’s effect on the model’s performance.
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