
Lossy Compression using Neural Networks

Divam Gupta
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
divamg@andrew.cmu.edu

Viraj Parimi
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
vparimi@andrew.cmu.edu

1 Introduction

Learning compact representations of data in an unsupervised setting is one of the key challenges
in machine learning. In the past, extensive work has been done in the domain of continuous latent
space representations of the input data using Variational Autoencoders(VAEs) which are capable of
modelling the data distribution as a non-linear transformation of the unobserved latent variables in a
generative setting. In this project, we intend to pursue an alternative chain of thought which works
with discrete latent space representations without significant performance implications with respect
to the continuous counterparts.

We first start with a vanilla autoencoder model with a continuous latent output. As we need floating
point to store the continuous vectors, the compression ratio is not very good. To improve the
compression ratio, we try a multiple techniques. Firstly we try a naive quantization technique. Then
we tried incorporate quantization with the loss function to make the outputs closer to the quantized
numbers and finally we also tried a training time quantization technique.

We implement and experiment these compression techniques in three models - Multilayer Percep-
tron(MLP) model, Convolutional Neural Network(CNN) model and Long Short Term Memory
networks(LSTM) model. We show empirical results on the MNIST [5], CIFAR10 [6] and ANKI [7]
text dataset. Details about these datasets can be found in Appendix.

The code of our implementations can be found at https://github.com/divamgupta/dnn_
lossy_compression

2 DNN based Compression Methods

2.1 Autoencoders

Autoencoders are one of the most popular approaches that are used to learn continuous latent space
representations of the input data in an unsupervised setting. These models are comprised of two
separate functions, the encoder ("recognition") function that performs a non-linear transformation
on the input data to learn the latent variables and a decoder function that tries to reconstruct the
input data from the learned representations. Additionally sequence autoencoders are just standard
autoencoders which have been adapted to work with sequence data by incorporating LSTM RNN
cells. Doing this allows the model to learn the temporal ordering of the sequence data allowing the
model to learn better compressed representation.

2.2 Naive Quantized Autoencoder

In this technique we first train a vanilla autoencoder with sigmoid activations in the bottleneck
representation layer. By adding sigmoid we ensure that the values are between 0 and 1, hence doing a
threshold quantization should not change it drastically. While training no thresholding is done, but at

Preprint. Under review.

https://github.com/divamgupta/dnn_lossy_compression
https://github.com/divamgupta/dnn_lossy_compression


inference time the sigmoid output is thresholded. If the output of the sigmoid is more than 0.5, it is
replaced by 1, else it is replaced by 0. In our experiments we found out that by using this technique
there is a big drop in quality of the reconstructions.

2.3 Quantized AutoEncoder with fence loss

There is a big performance drop if we naively quantized the encoder outputs of the autoencoder. This
is because many values of the latent space are near 0.5 ("sitting on the fence"). Hence, to circumvent
that we try a loss function which penalizes the encoder for not having the values close to 0 or 1. Such
loss function can be defined as follows,

Fence Loss =
1

N

∑
i

min(xi, 1− xi)

where N is the size of latent space. Using this technique the distribution of the latent vector during
training time is close to the distribution of the quantized latent vector.

2.4 Training time Quantized Autoencoder with commit loss

Figure 1: Training time Quantized Autoencoder

This model is similar to the naïve quantized model, but we do the quantization of the bottleneck
representation layer at training time itself. We use the same threshold based quantization - if output
is more than 0.5, it is replaced by 1, else it is replaced by 0. This is not a differentiable operation
hence during back propagation, the quantization is skipped. This is equivalent to approximating the
gradient by the identity operation.

Commit Loss =
1

N

∑
i

(hi
a − hi

b)
2

where N is the size of the latent space,ha is the latent space after discretization and hb is the latent
space after discretization. This discretization can be represented as,

Binarize(h) =
{
1 h > 0.5

0 otherwise

Similar to VQVAEs, this is not stable during training, hence we have to add a commitment loss. Here
we minimize the L2 distance between the latent space before and after quantization. We have to
ensure that the output of the encoder before discretization is similar to the output after thresholding.
Example, the outputs before thresholding should be either close to 0 or close to 1. By this the encoder
learns to assign discrete codes for given inputs.

3 Models

We implemented the above discussed ideas and incorporated them in different types of autoencoders
where each model is designed to target certain type of input domain.

2



3.1 Multilayered Perceptron

These models make use of the MLP to create dense connections between the input and hidden latent
space. This interconnection forms the encoder. Further it also creates dense connection between the
hidden latent space back to the original input space which forms the decoder. Even though these
dense connections are memory intensive, they help in capturing the latent space more thoroughly.

3.2 LSTM

Figure 2: Training time Quantized LSTM Autoencoder with Commit Loss

This model is an extension of the widely used seq2seq [8] models. An RNN layer that acts as an
encoder processes the input sequence and passes on its hidden states to another RNN layers which
acts a decoder. We used a character level model where the decoder uses the hidden states of the
encoder as its initial state and predicts a character till the end of sequence. Such models are equipped
to handle textual datasets.

3.3 Convolutional Neural Networks

These models make use of the highly popular CNNs which are more robust at capturing image
features. We first pass the input through a encoder convolutional layer which is them downsampled
using maxpooling. This is then passed through a decoder convolutional layer which after upsampling
returns back to the input space. Such models are more adept at retreiving more information while
being efficient compared to MLP.

4 Metrics

In order to quantify the performance of the methods we have to use two different set of metrics which
are suitable for either the textual domain or image domain. For images we use PSNR, SSIM, MSE,
MAE and CR. For texts we use Levenshtien, Cosine and Jaccard distance. Additionally we also use
BLEU score. Details of these metrics can be found in the appendix.

5 Experimental Results

We implement and experiment with all the models described above. To get better insights of the
performance of each model, we experiment with multiple model sizes. By increasing the model size,
the compression ratio decreases but the quality of the compression increases. We can observe this
trade-off for all the models.

5.1 Multilayered Perceptron

For the MLP network we perform experiments on the MNIST dataset. The input size of the model is
a vector of length 784. We experiment with model of hidden size 10, 50 and 100. The quantitative
results are mentioned in Table 1. For model with 50 and 100 hidden units the MAE of the model with

3



commit loss is better. Visually (Figure 3) we can see that the reconstructions for models with small
hidden units are very bad. The results look more noisy for model with naive quantization.

Table 1: Multilayered Perceptron based Autoencoder results on MNIST
Model/Metric PSNR SSIM CR MSE MAE

Vanilla Autoencoder 10 31.2751 0.3861 19.6 48.8886 119.2946
Naive Quantized Autoencoder 10 31.8633 0.4221 627.2 42.9833 96.4650

Commit Loss Quantized Autoencoder 10 31.7965 0.4180 627.2 44.8423 99.6676
Vanilla Autoencoder 50 32.3890 0.6910 1.96 38.4118 94.0038

Naive Quantized Autoencoder 50 33.0452 0.5230 62.72 33.2511 74.9453
Commit Loss Quantized Autoencoder 50 32.9476 0.6812 62.72 34.6837 70.0960

Vanilla Autoencoder 100 33.8850 0.8651 0.196 27.7169 71.5690
Naive Quantized Autoencoder 100 34.2288 0.6527 6.272 25.5917 64.0222

Commit Loss Quantized Autoencoder 100 33.5612 0.7730 6.272 30.2342 59.7807

Original Image 

Vanilla Auto-Encoder

Vanilla AE with naive 
quantization

AE with quantization 
and commit loss

H = 100H = 10

Figure 3: Qualitative results of MLP model on the MNIST dataset. We see that the quality decreases
if we naively do quantization on the autoencoder model. We also see that the quantized model with
commit loss looks pretty much like the non-quantized vanilla model.

5.2 Convolutional Neural Networks

For the CNNs network we perform experiments on the CIFAR10 dataset. The input size of the model
is a image of size 32x32x3. We experiment with model of different size. The latent dimension of the
small, medium and large are 4x4x16 , 4x4x32 and 4x4x48 respectively.

The quantitative results are mentioned in Table 2. For all the sizes we can observe an improvement
of model with commit loss over the naive quantization model. The fence loss does not show
any improvement. Visually (Figure 4) we can see that the reconstructions for models with naive
quantization are very bad. The reconstruction of the discrete model with commit loss looks very
similar to the continuous vanilla autoencoder.

5.3 LSTM

For the LSTM network we perform experiments on the ANKI dataset. The input size of the model is
of size 22x38 . We experiment with model of hidden state sizes - 32, 64, 128, 256.

The quantitative results are mentioned in Table 3. We observe that the commit loss model performs
better on the Levenshtien and BLEU score. Whereas the naive quantized model performs better on
Cosine and Jaccard distances. Visual details of the models are presented in the appendix.

4



Table 2: Convolutional Neural Network based Autoencoder results on CIFAR10
Model/Metric CR PSNR SSIM MSE

Vanilla CNN Autoencoder Small 3 29.0800 0.9013 80.3677
Naive Quantized CNN Autoencoder Small 96 27.9230 0.5404 104.9021

Commit Loss Quantized CNN Autoencoder Small 96 28.6237 0.8413 89.2711
Fence Loss Quantized CNN Autoencoder Small 96 27.9546 0.5562 104.1400

Vanilla CNN Autoencoder Medium 2 29.4380 0.9323 74.0077
Naive Quantized CNN Autoencoder Medium 48 27.8886 0.6400 105.7349

Commit Loss Quantized CNN Autoencoder Medium 48 28.8654 0.8842 84.4380
Fence Loss Quantized CNN Autoencoder Medium 48 28.0009 0.6909 103.0374

Vanilla CNN Autoencoder Large 1 29.5720 0.9425 71.7605
Naive Quantized CNN Autoencoder Large 32 28.1532 0.7706 99.4850

Commit Loss Quantized CNN Autoencoder Large 32 28.8930 0.9006 83.9042
Fence Loss Quantized CNN Autoencoder Large 32 28.0028 0.7566 102.9923

Original Image 

Vanilla Auto-Encoder

Vanilla AE with naive 
quantization

AE with quantization 
and fence loss

AE with quantization 
and commit loss

CNN Large CNN Small 

Figure 4: Qualitative results of CNN model on the CIFAR10 dataset. We see that the quality decreases
if we naively do quantization on the auto-encoder model. We also see that the quantized model with
commit loss looks pretty much like the non-quantized vanilla model.

Table 3: LSTM based Autoencoder on ANKI
Model/Metric Levenshtien Cosine Jaccard BLEU

Vanilla LSTM 32 10.36 0.1066 0.236 0.7762
Naive Quantized LSTM 32 15.2 0.2004 0.4705 0.8503

Commit Loss Quantized LSTM 32 13.29 0.2376 0.4843 0.8295
Fence Loss Quantized LSTM 32 16.14 0.2161 0.4455 0.8909

Vanilla LSTM 64 3.57 0.0379 0.0878 0.4447
Naive Quantized LSTM 64 15.07 0.1686 0.3495 0.8902

Commit Loss Quantized LSTM 64 13.07 0.2028 0.4327 0.8023
Fence Loss Quantized LSTM 64 14.78 0.1971 0.4306 0.9003

Vanilla LSTM 128 2.25 0.0136 0.0165 0.2151
Naive Quantized LSTM 128 12.2 0.1347 0.3147 0.8209

Commit Loss Quantized LSTM 128 13.21 0.2233 0.4706 0.8123
Fence Loss Quantized LSTM 128 11.39 0.1879 0.4044 0.7665

Vanilla LSTM 256 3.38 0.0284 0.0627 0.3392
Naive Quantized LSTM 256 10.04 0.1771 0.3589 0.7165

Commit Loss Quantized LSTM 256 10.6 0.1643 0.3502 0.7212
Fence Loss Quantized LSTM 256 9.86 0.1799 0.3859 0.7163

5



References

[1] Bowman, Samuel R. et al. “Generating Sentences from a Continuous Space.” Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning (2016): n. pag. Crossref. Web.

[2] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: from error visibility
to structural similarity," in IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004.

[3] Wikipedia contributors. "Peak signal-to-noise ratio." Wikipedia, The Free Encyclopedia. Wikipedia, The
Free Encyclopedia, 13 Apr. 2020. Web. 4 May. 2020.

[4] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics (ACL ’02). Association for Computational Linguistics, USA, 311–318.
DOI:https://doi.org/10.3115/1073083.1073135

[5] LeCun, Y. & Cortes, C. (2010), ’MNIST handwritten digit database’, .

[6] Alex Krizhevsky https://www.cs.toronto.edu/ kriz/cifar.html

[7] ANKI http://www.manythings.org/anki/

[8] Keras Blog https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

6 Appendix

6.1 Datasets
• MNIST - It is a handwritten digits database where each grayscale image is 28 × 28 pixels. It has 60k

training images and 20k testing images.

• CIFAR10 - It is a collection of color images with 10 classes where each image is 32 × 32 pixels. It
contains 60k training images where each class contains 6k samples.

• ANKI - It is a text based dataset which contains a plethora of bilingual sentence pair files. This was
originated as a teaching tool to learn new languages. Each file contains a list of sentence pairs which
get more complex as the file progresses.

6.2 Metric Details

6.2.1 Image

For the image based models we used the following metrics that are widely used for this purpose.

• Peak Signal to Noise Ration (PSNR) [3] - This metric is designed specifically for images and is defined
as follows,

PSNR = 10 · log10
(
MAX 2

I

MSE

)
where MAX I is the maximum possible intensity value of the input image and MSE represents the
mean squared error between the input image and its noisy approximation. The value is represented in
decibels and higher is better.

• Structural Similarity (SSIM) Index [2] - This metric was again designed to quantify the similarity
between two images. It is an improvement over PSNR and MSE as it considers the idea that pixels
have strong inter-dependencies especially when they are close. The measure is defined over two
windows (generally gaussian) with common sizes.

• Compression Ratio (CR) - It is defined as follows,

CR =
Size of uncompressed data

Size of compressed data
(1)

The metric allows us to quantify the extent of data savings that we gain from a particular method.

• Mean Squared Error (MSE) - It is also a widely used metric for quantifying compression effectiveness.
Ideally MSE should be lower for better approaches.

• Mean Absolute Error (MAE) - This is one variant of MSE which allows one to similarly quantify the
differences between two images.

6



6.2.2 Text

For the text based models we utilized the following metrics to evaluate the quality of the reconstructed text.

• Levenshtien Distance - This is a string metric that is defined to measure the difference between two
sequences. It can quantified as the minimum number of single-character edits (i.e. insertions, deletions,
or substitutions) required to change one sequence into the another sequence.

• Cosine Distance - Cosine Similarity between two sequences is just the cosine of angle between these
sequences. This distance hence can be calculated by subtracting it from 1. This metric is advantageous
as even if the two input sequences are far apart in terms of euclidean distance, they may still have the
same orientation.

• Jaccard Distance - This metric also known as the intersection over union is defined as the size of the
intersection divided by the size of the union of two sets. We first convert the input sentences into two
different sets using lemmatization and then performing the necessary operation. The distance then can
be calculated by subtracting this from 1. One downside of this metric is that as the length of the input
sequences increases, the size of the intersection set tends to increase as well.

• BLEU Score [4] - This metric was initially created to compare the quality of machine translated
sentences when given a set of quality reference solutions. For our purpose we used the original input
sentence as our reference solution and then compare the reconstructed text against that reference using
BLEU algorithm. Since BLEU was defined for 4-grams, we use the smoothed out version which
allows us to calculate the score even if the input sentence is smaller than 4 words. Again to get the
distance we simply subtract this quantity from 1.

6.3 LSTM Autoencoder Results
 

Method Example 1 Example 2 

Original Text wheres your daughter whats your full name 

Vanilla Auto-Encoder where beas you spees what look for leared 

Vanilla AE with naive 
quantization 

were seere bar aw yough whot fore frerelingry 
 

AE with quantization and 
fence loss 

wherd youre deed that 
 

show deve youre feally 
 

AE with quantization and 
commit loss 

wheres your so there whats your to starte 

 
Figure 5: Qualitative results of LSTM model on the test dataset. We see that the quality decreases if
we naively do quantization on the auto-encoder model. Due to the small size of the bottleneck layer,
the quality of the compressed text is bad. But we see that the model with commit loss is better than
tan than the niave quantization model. The fence loss also seems to help to a small extent.

7


	Introduction
	DNN based Compression Methods
	Autoencoders
	Naive Quantized Autoencoder
	Quantized AutoEncoder with fence loss
	Training time Quantized Autoencoder with commit loss

	Models
	Multilayered Perceptron
	LSTM
	Convolutional Neural Networks

	Metrics
	Experimental Results
	Multilayered Perceptron
	Convolutional Neural Networks
	LSTM

	Appendix
	Datasets
	Metric Details
	Image
	Text

	LSTM Autoencoder Results


