
Discrete Sampling-Based Planning

Dapeng Zhao (Eagle)
dapengz

Rockey Hester (Quint)
rockeyh

Viraj Parimi
vparimi

December 20, 2020

1 Abstract

We introduce dRRT, a discrete sampling-based planner that uses Bresenham’s line algorithm and tech-
niques from search-based planning to achieve anytime qualities and reuse computation. Results on planning
for a 5-DOF robotic arm demonstrate faster performance than traditional RRT.

2 Introduction

For the project, we devised a discrete sampling-based planner called dRRT. Conventional sampling-
based planners like RRT execute in the continuous configuration space (C-space). The problem with such
approaches is that since their underlying sample space is so large, one needs to run them for multiple
iterations to generate a plan, even in trivial cases. Variants of RRT like RRT-Connect and RRT* have been
proposed to enhance convergence time and solution quality, respectively.

As an alternative, we propose a discrete version of RRT by leveraging ideas from search-based planning
algorithms. Intuitively, using this approach, one would be able to generate the tree more efficiently. Further,
one can even improve the collision checker’s performance by utilizing the hierarchical decomposition of the
problem.

3 Approach

3.1 Planning Representation

In order to represent the problem, we utilize the following planning representation,

MR =< θ >

MW =< obstacle/free space >

SRcurrent =< θcurrent >

SWcurrent =< constant >

C =< Euclidean Distance >

G =< θgoal >

where MR represents the model of the robot, MW represents the model of the world, SRcurrent represents
the current model of the robot, SWcurrent represents the current model of the world, C represents the
cost function, and G represents the goal. For experiments, we utilize the setup provided in HW2 and
consequently implement the planner on a 5-DOF arm robot. This setup implies that θ is a 5-dimensional
variable of joint angles.

1



3.2 Algorithm

Algorithm 1 presents the pseudo-code of our proposed algorithm. The algorithm’s input is the qinit and
qgoal configurations of the robot. Since these configurations lie in the continuous space, we first utilize the
LocateOnGrid function to map them to particular points on the grid representation of the C-space. To
generate this grid, we start with a resolution λ of 2 and keep increasing this in multiples of 2 until we can
map qinit and qgoal to grid points. Once mapped, we add the grid point vinit to the Tree T .

We then sample a random configuration qrand from the grid C-space by utilizing the Sample function.
To mitigate situations where it’s hard to find the goal, we utilize goal-bias sampling. This function’s key
idea is that we maintain a set Q of not-to-draw points. This set consists of grid points that have been either
sampled or added to the Tree T and is analogous to the closed list in search-based planning. Once we get
qrand we use the Extend function where like the regular RRT we detect the nearest grid point vnear that is
part of T from qrand. To identify which grid points would allow to reach qrand we exploit the Bresenham

function. For each of the points vnew returned by it, we check whether the line connecting them is valid
and is collision-free. If it was then, we add vnew to both T and Q.

When all the possible grid points at a given resolution λ get exhausted either because they were added
to T or because they were in collision, we increase the resolution of the underlying grid by using the
Inflate function. We carefully update the nodes in T and Q except vinit and update their corresponding
parents within this function. This technique allows us to skip the collision checking in finer resolutions for
already existing nodes, thereby saving a lot of time even though the grid size is huge. This idea was also
the reason as to why we chose to connect grid points greedily via Bresenham function because connecting
two nodes without the intermediate points would violate this re-usability. Finally, when the algorithm can
extend to qgoal, we terminate and publish the path.

4 Experimental Analysis

4.1 Setup

There are ten pairs of start-goal, and each pair is evaluated 5 times for each algorithm, instead of
only running once. If at one test, the planner couldn’t find any viable path, the test is deemed as failed,
and the number of this test is not considered for evaluation. Since the primary point of comparison is
with RRT, we chose random start and goal configurations that favored RRT over the other algorithms. This
way, we ensured that we could have a fair comparison between RRT and dRRT. A brief video showcasing
our experiments can be found at https://youtu.be/Pwc9E1cjk7A. Our complete implementation can be
found at https://bitbucket.org/eaglez1111/16782_final_proj/

4.2 Metrics Definition

The metrics used for evaluation:

• Time(s): How long the planner takes to return a feasible plan

• Succ.(%): Success rate

• #Spl.: The number of nodes in the tree/graph

• Cost: The euclidean length of the path in C-space

• Leng.: The number of configurations in the returned plan, the length of the plan

2

https://youtu.be/Pwc9E1cjk7A
https://bitbucket.org/eaglez1111/16782_final_proj/


Algorithm 1: Discrete RRT

1 Function dRRT(qinit, qgoal):
2 LocateOnGrid([qinit, qgoal])
3 T .add(vinit = {qinit,�})
4 while qgoal /∈ T do
5 qrand ← Sample(λ)
6 if qrand then
7 Extend(T , qrand)
8 else
9 Inflate(λ)

10 Function LocateOnGrid(Q):
11 λ← 2
12 while ¬Discretize(Q, λ) do
13 λ← λ ∗ 2

14 return λ

15 Function Extend(T , qrand):
16 vnear ← NearestNeighbor(q, T )
17 Qline ← Bresenham(vnear.q, qrand)
18 for qnew ∈ Qline do
19 if IsValidLine(vnear.q, qnew) then
20 vnew.q ← qnew
21 vnew.parent← vnear
22 T .add(vnew)

23 Q.add(vnew.q)
24 vnear ← vnew
25 else
26 return NotReached

27 return Reached

28 Function Sample(λ):
29 if goal bias sampling then
30 return qgoal
31 else

32 if ‖Q‖ == λD then
33 return �;

34 ℵλ ← all points at current resolution λ

35 qrand ← (Qpool = ℵλ −Q)[RandomInt()]

36 Q.add(qrand)
37 return

38 Function Inflate(λ):
39 λ← λ ∗ 2
40 for vi ∈ T \ {vinit} do
41 vnew.q ← (vi.q + vi.parent.q)/2
42 vnew.parent← vi.parent
43 vi.parent← vnew
44 T ′.add(vnew)

45 Q.add(vnew.q)

46 T .append(T ′)

3



4.3 Performance (mean)

Average values of the metrics are shown here:

Table 1: Average values of the metrics

Algo Time(s) Succ.(%) #Spl. Cost Leng.

RRT 0.076 100.0 255.8 7.95 12.50

dRRT 0.027 100.0 3.6 10.58 4.80

RRT-Connect 0.008 100.0 343.7 14.36 23.83

RRT-Star 0.018 100.0 242.9 8.03 12.90

PRM 0.770 83.3 3002.0 4.00 2.83

4.4 Performance (variance)

For each state-goal pair and each algorithm, the variance of the 5 trials is calculated; variances are then
averaged for each algorithm to be reported here:

Table 2: Variance values of the metrics

Algo Time Succ. #Spl.(105) Cost Leng.

RRT 0.141 0.0 3.7143 16.33 52.92

dRRT 0.004 0.0 0.0001 0.09 3.47

RRT-Connect 0.000 0.0 0.2697 9.58 24.14

RRT-Star 0.000 0.0 0.3127 7.94 33.36

PRM 0.003 0.1 0.0000 0.73 0.13

4.5 Discussion

• dRRT performed faster than RRT on average, which shows the performance boost discrete sampling
provided mainly due to reusing of computation for collision checking. However, RRT-Connect and
RRT* were better performing algorithms in terms of time. In terms of success rate, all the algorithms
except PRM performed flawlessly. This situation happens due to the biased configurations which we
took, as mentioned previously.

• The number of nodes within the tree is minimal for dRRT compared to others, which happens since we
are working in the discrete C-space. This allows us to skip large distances over the C-space, thereby
allowing us to connect far-off configurations. This inference is further corroborated by the number
of nodes in the final path. dRRT and PRM returned smaller paths compared to other algorithms.

• The only metric where dRRT is beaten by RRT is the path cost. This finding was expected due to the
huge skips we make over the C-space. One potential improvement of dRRT would be to optimize the
path to return lower-cost solutions.

• dRRT algorithm provides resolution-based completeness guarantee where if the solution was to exist
in a particular resolution, the algorithm is bound to find it. This is true because before we move to
a finer resolution, we exhaust all the possible grid points in the current resolution. By doing that,
we ensure that if there were a potential solution, dRRT would never miss it.

• The hierarchical decomposition routine allows us to propose a quick solution very fast at higher
resolutions. This anytime solution can be further improved depending on how much time is available
by moving down the hierarchy and working with finer resolutions.

4



• Low variance on performance metrics is essential. dRRT is more stable and predictable, but we believe
that this could be because of very few nodes in the tree. For metrics like path cost and runtime,
being consistent helps algorithm designers and programmers better manage the system.

5 Conclusion

We developed and evaluated dRRT, a new algorithm for discrete sampling-based planning that sacrifices
initial solution quality in order to outperform RRT in time and space complexity. Future work entails
development of discrete versions of other sampling-based planners such as RRT*, RRT-Connect, and PRM,
as well as developing an efficient post-processing tool to smooth dRRT solutions.

5


	Abstract
	Introduction
	Approach
	Planning Representation
	Algorithm

	Experimental Analysis
	Setup
	Metrics Definition
	Performance (mean)
	Performance (variance)
	Discussion

	Conclusion

