
6.843 - Final Project Report
Catching a Ping Pong Ball with an iiwa

Viraj Parimi
PhD Student

Model-Based Embedded and Robotics Systems
EECS

Cameron W. Pittman
Master’s Student

Model-Based Embedded and Robotics Systems
AeroAstro

Abstract—For our final project, we programmed the kine-
matics of a Kuka iiwa using Drake [Tedrake and the Drake
Development Team, 2019] to catch a ping pong ball with a ping
pong paddle 1. We identified distinct kinematic regimes in the
catching task, which we split into a pre-initial contact state
and post-initial contact state. We applied finite-state machine
(FSM) techniques to model the paddle’s trajectory off equations
of motion of projectiles while in a pre-initial-contact mode, while
we switched to a PD controller with offset stabilization in the
post-initial-contact mode. Both modes of the system relied on
passing desired end-effector velocities to a differential inverse
kinematics (IK) controller with optimization-based joint limit
enforcement. We simulated a perception pipeline by passing
ground-truth ball and paddle states to our controller directly.
Our design showed success in bringing the ball to a stop from
a range of initial positions and velocities. However, keeping the
ball at a stable equilibrium on the paddle surface for significant
durations proved challenging and would require future work. We
evaluated the performance of our system iterations by comparing
their performance in stabilizing caught balls with different initial
positions and velocities.

I. INTRODUCTION AND RELATED WORK

Ping pong is a popular topic for roboticists. In our liter-
ature review, we found many authors demonstrating a range
of robotics techniques using paddle-wielding robots. [Rapp,
2011] demonstrated perception and kinematics techniques in
programming a robot to juggle, or keep the ball in the
air indefinitely using successive upwards strikes. [Mülling et
al., 2013] applied machine learning techniques in selecting
strike movements. More recently, [Gao et al., 2020] used
reinforcement learning to train a virtual manipulator to return
serves. Others have looked at the grips required for grasping
paddles [Liu et al., 2011]. One of the groups from last year’s
manipulation course created a juggling robot [Beveridge and
Shubert, 2020]. While we’re initially drawn to the idea of
implementing our own juggling robot, we pivoted to focus on
catching, which we believed was a unique and challenging
task due to the level of precision required to exert continuous
control on the movement of a free-moving ball in 3D space
without gripping it. In Figure 1, we show how humans perform
the task in two distinct phases: (1) bringing the ball to a stop
with the paddle, and (2) stabilizing the ball on the paddle.

We distinguish between the act of catching a ball and the
task of stabilizing a moving ball on a paddle. We define
catching to be the act of bringing a ball into contact with

1https://github.com/cameronwp/ping-pong-catcher

a paddle’s surface with no (or minimal) bouncing. We define
stabilization as the task of maximizing the time of contact
between a free-moving ball and a paddle’s surface. A simple
intuition for the mechanics of a catch is that a ball and paddle
should have the same instantaneous velocity at the initial
moment of contact. This allows the normal force between the
paddle and the ball to grow smoothly rather than jerk and
impart relative momentum to the ball. For stabilization, we
sought a controller design that would maximize the likelihood
of the ball staying at the center of the paddle.

We mirrored our system design on the same principle. We
used a finite-state machine (FSM) approach to switch the
mode of the controller based on whether the ball and paddle
had come into initial contact. We justified this decision by
reasoning about the range of possible trajectories for a ball
before and after the initial contact, and we took inspiration
from the way humans catch ping pong balls. Note that the
iiwa’s poses in Figure 2 mirror Cameron’s poses in Figure 1.
We constrained our simulation environment such that the ball
must be falling into the iiwa’s workspace. More specifically,
we expected the ball’s velocity vector to be primarily in the
−z direction when it came into initial contact with the paddle.
Catching balls served horizontally from the same level as the
iiwa is outside the scope of this project. If we assume that
the first contact between the ball and the paddle either results
in no bounce or a very minimal bounce, we know the ball
and paddle must have a significantly smaller relative velocity.
As such, our goal then changes to one where we want to
manipulate the ball in the direction of a stable position on the
paddle. The FSM approach naturally fell out of the distinction
between the two kinematic regimes of the ball.

We recognized that the realism of our simulation would
depend heavily on the physics of ping pong balls. Namely,
ping pong balls are very light objects and their trajectories
are significantly influenced by air resistance. Ball spin is also
a major factor, producing pronounced curves and deviations
from projectile motion. While contact between a ball and
paddle is nearly elastic, the frictional forces between rubber
surfaces and spinning plastic spheres are complex and strongly
influence interactions during the stabilization phase. In the
name of expedience and focus on the manipulation tasks at
hand, we limited ourselves to simulating ping pong balls as
perfect projectiles. This allowed us to use an open-loop design
while computing paddle trajectories during the first mode of

https://github.com/cameronwp/ping-pong-catcher

Fig. 1: Cameron demonstrating how to catch a ping pong ball with a paddle in real life. On the left, he tracks the ball and
prepares to intercept it at the same velocity as it comes down into his effective workspace. On the right, the ball is in contact
with the paddle, however, minute and rapid adjustments in the paddle’s position and rotation are required to keep the ball in

contact with the paddle surface.

Fig. 2: On the left, the iiwa is in the catching state. Its pose reaching up to the ball resembles how Cameron prepared to
make contact. On the right, the iiwa is in the stabilization state. It uses small translational and rotational adjustments to try to

work the ball to the center of the paddle.

Fig. 3: Catcher controller FSM state diagram.

the FSM. For simulating contact dynamics, we chose to use the
Hunt-Crossley model that Drake supports with low dissipation
values that subjectively appeared to produce ping pong ball-
like bounces. For contact forces, we used µ = 0 to simulate
a rolling sphere on the paddle surface. As such, the system
we simulated is only subjectively similar to the true task of
catching a ping pong ball, though we believe the techniques
described below in Section II could be extended to successfully
perform real-world maneuvers as well.

II. APPROACH

Our final approach centered around a controller with FSM
state transitions, which we called the Catcher controller,
which would output desired velocities.

Translational and rotational kinematics were calculated sep-
arately and all calculations were performed in the world frame.
The controller used in our final system transitioned from
catching to stabilization states when the ball and paddle made
an initial contact. The behavior of both the translational and
the rotational kinematics of the controller transitioned between
states, as can be seen in Figure 3.

A. Catching State Translational Kinematics

For the first state of the FSM, we needed to compute a
trajectory for the paddle whereby it and the ball would meet
at some future position with the same velocity, which we
visualize in Figure 4. To do so, we modeled the paddle as a
second projectile in the scene and computed its initial velocity
and acceleration vectors such that the future positions and
velocities of the paddle and ball would coincide. We performed
all of our calculations in the world frame for simplicity’s sake.

Let pb[t] and pp[t] represent the position of the ball and
paddle respectively at some time t. Likewise, let v⃗b[t], v⃗p[t],
a⃗b, and a⃗p represent the velocity and acceleration vectors of
the ball and paddle (assuming constant acceleration).

To start, we picked an arbitrary z value within the iiwa’s
workspace to be the height at the time of the catch, pbz[tcatch].
Subjectively, it seemed to make sense to set pbz[tcatch] near
or slightly above the mid-height of the iiwa’s workspace. At
higher positions, the ball would be moving more slowly, but
the iiwa would lose range of motion. Too low and the ball
would be moving too fast and collisions with the floor would
be a concern. We calculated tcatch by applying the quadratic
equation to the ball’s parabolic motion in the z direction,

Fig. 4: A not-to-scale representation of the trajectory we
computed to catch the ball. While both the ball and paddle

have different starting positions, we essentially computed the
parabolic motion required to bring the paddle to the ball

with the same velocity. While the ball only accelerated in z
by g, we allowed the paddle to accelerate in any direction to

meet the ball.

much in the same way that [Rapp, 2011] modeled the time
of successive bounces.

tcatch =
1

g

(
vbz[0] +

√
v2bz[0] + 2abz(pbz[0]− pbz[tcatch])

)
(1)

Given tcatch, we could extrapolate a ball location, pb[tcatch],
and ball velocity, v⃗b[tcatch], that we wanted the paddle to match.
We found the initial paddle velocity and paddle acceleration,
v⃗p[0] and a⃗p, which fell out of the equations of motion for
projectiles. Let pb[tcatch] = pb[0] + v⃗b[0]tcatch +

1
2 a⃗bt

2
catch. The

equalities we needed to satisfy were,

pb[tcatch] = pp[0] + v⃗p[0]tcatch +
1

2
a⃗pt

2
catch (2)

v⃗b[tcatch] = v⃗p[0] + a⃗ptcatch (3)

We have two equations with two unknowns. Simplifying
and rearranging, we find

v⃗p[0] =
2(pb[tcatch]− pp[0])

tcatch
− v⃗b[tcatch] (4)

a⃗p =
v⃗b[tcatch]− v⃗p[0]

tcatch
(5)

Thus, at each timestep, t, our controller updated the desired
translational velocity of the paddle to

v⃗p[t] = v⃗p[0] + a⃗pt (6)

We can see example behavior of Catcher in the catching
state in Figure 5.

Fig. 5: A timelapse demonstrating Catcher in the catching state. Note how the iiwa reaches up towards the ball and then
comes to a slightly lower z height after the catch due to momentum. In this example, pbz[tcatch] is at the iiwa’s inital z height.

Fig. 6: An example of stabilization PD controller causing the
iiwa reach out for a ball post-catch.

B. Stabilization State Translational Kinematics

We were no longer concerned with exactly matching the
velocities of the ball and paddle in the stabilization state of the
FSM. Instead, we aimed to keep the ball as close as possible
to the center of the paddle while keeping paddle velocities
low. Additionally, we wanted to bias the iiwa to return to its
initial position to complete the task.

Let Kp and Kd represent the position and derivative gains
respectively. A small K0 gain, where K0 < Kp, was used
to return the iiwa to pp[0]. We applied a modified version
of a closed-loop PD controller design with the following
formulation

v⃗p[t] = (7)
Kp(pb[t]− pp[t]) +Kd(v⃗b[t]− v⃗p[t]) +K0(p⃗p[0]− p⃗p[t])

This PD controller is effective at following the ball, an
example of which can be seen in Figure 6.

Note that pp specifically refers to the point at the center
of the disk of the paddle. pb refers to the center of mass of
the ball. Assuming the ball and paddle are solids and can not
penetrate, pb can never equal pp. The minimum offset between
pb and pp is the radius of the ball and half the thickness of the
paddle. We omitted it in Equation 7, but we included this offset
in the actual pb[t]−pp[t] operations in our controller (including
the rotational kinematics controller described in Section II-C.

C. Rotational Kinematics

Across both states of the FSM, we used a closed-loop design
resembling a PD controller to control the rotational velocity of
the paddle to encourage the ball to roll to its center. To do so,
we took a naive approach wherein we scaled the rate of roll
and pitch based on the offset of the ball from the paddle center,
∆p, in the x and y directions. We constrained the rotational
velocities in any direction to a maximum of 30 deg /s, θ, under
the assumption that higher angular velocities would lead to
the ball being flicked off the paddle. Let ωp[t] represent the
angular velocity of the paddle at timestep t. Let rp represent
the radius of the paddle. We included an additional correction
factor, c = [1,−1, 0], to correct the direction of the pitch and
remove the yaw.

∆p = (pp[t]− pb[t])/rp

ωp[t] = Kpc (θ∆p− wp[t− 1])

Qualitatively, it appeared that the orientation corrections
required for successful catches were significantly smaller
than the corrections required for stabilization. As such, we
initialized the Kp of the rotational controller to small values
while in the catching state, and then transitioned to higher
gains when the controller entered stabilization state.

D. System Design

We built and simulated Catcher with a modified iiwa
manipulation station in Drake, architecting the system as seen
in Figure 7. Starting from the Perception component, we relied
solely on the capability provided by MultibodyPlant
to get body states directly in lieu of any real perception
system. We passed said states directly to the Catcher con-
troller described above, which computed paddle trajectories.
Catcher consisted of a single LeafSystem and used con-
ditional logic to transition between states in its CalcOutput
callback method. A differential inverse kinematics controller
computed joint trajectories and enforced joint velocity limits

Fig. 7: A simplified view of our overall system design
highlighting the components we focused on in this project.

using Drake’s MathematicalProgram optimization front-
end with SNOPT [Gill et al., 2005]. We based our kinematics
pipeline on the "Virtual Wall" exercise from Problem Set 32.

E. Controller Design Iterations

As we developed Catcher, we experimented with different
kinematics pipelines. At the outset of the project, we intended
to pre-compute piecewise trajectories by interpolating between
positions to meet the ball in its projected path. Given the
importance of matching the ball’s velocity, we found this
approach failed to give us enough explicit control to robustly
catch. In the second iteration, we developed the kinematics
as described in Section II-A. We initially passed the resulting
end-effector spatial velocities denoted by V P to a differential
IK controller. The required joint velocities of the iiwa arm,
denoted by v, were computed using the standard Moore-
Penrose psuedo-inverse J+ formulation. It is defined as,

v = [JP (q)]+V P

where JP is the Jacobian matrix and q is the joint configu-
ration of the iiwa arm. Upon execution, we realized that these
commanded velocities were violating the joint velocity limits
of the iiwa, leading to situations where the iiwa would end
up colliding with itself. We suspected that this was happening
since such controllers do not perform well around singularities
i.e, when the minimum singular value of the Jacobian gets
small, then some values in the inverse get very large thereby
causing the erratic behavior.

To improve the computed joint velocities, we reformulated
the problem to leverage a constraint-based approach. Our new
version of Catcher solved the following problem,

min
v

|JP (q)v − V P |22
st. vmin ≤ v ≤ vmax

where we set vmin = −3, vmax = 3 (we drew the 3 from the
constants given to us in the same controller design in Problem
Set 3). We utilized the SNOPT solver provided by Drake
to solve this problem. As expected, this approach generated
reasonable iiwa joint velocity commands for smooth motion

2https://manipulation.csail.mit.edu/pick.html#virtual_wall

without the erratic behavior we saw previously. We also noted
this approach was much more robust in that it could produce
qualitatively reasonable motions regardless of ball and paddle
initial states.

Our final extension was to incorporate the additional orien-
tation adjustments in Catcher as described in the Section
II-C and passing desired ωp to the differential IK system.

III. EVALUATION AND DISCUSSION

We wanted to evaluate the catching ability of our system
and the choices we made in building it. To do so, we devised
an experimental setup to compare the ability for different
system designs to catch balls with different initial positions
and velocities. We show the initial ball states in Figure
8. To quantify the difference between the performance of
different models, we introduce a metric which we term as
the stability quotient, φ, which is defined as the amount of
the time that the ball was in contact with the paddle over
the course of simulation. φ acts a quantitative metric that
rewards system designs for the quality of the initial catch (eg.
does the ball bounce during the catch? is the ball near the
center of the paddle?) and the stability of the ball after the
catch. Further, since the different controllers rely on compute
intensive procedures, we also present an evaluation of these
approaches in terms of how long it took them to complete
the simulation. This metric allows us to perform a relative
comparison of the performance of the systems in terms of φ.

To compute φ we detected contacts between multiple bodies
in the plant and identified timesteps with contact between the
paddle and ball. For the purposes of experiments, we ran the
simulation for 3 seconds and hence by definition, φ ∈ [0, 3]
where higher values means better performance. We queried
for contact every 0.05 seconds of wall time elapsed in the
simulation. We chose to compute this metric in this fashion
to avoid increasing the computation times of the methods.
Further, for all the experiments we used a fixed set of gains
and did not change them to suit the different scenarios in order
to keep the evaluations as fair as possible.

The system designs we tested reflected the evolution of our
Catcher design. The designs we tested were:

1) Baseline - piecewise trajectories in z
2) DiffIK Translational Projectile Matching without

SNOPT - passing translational kinematics alone to a
Pseudo-Inverse controller without optimization

3) DiffIK Translational Projectile Matching with
SNOPT - passing translational kinematics alone to a
Differential IK controller with optimization

4) DiffIK Spatial Projectile Matching with SNOPT -
passing translational and rotational kinematics alone to
a Differential IK controller with optimization

Table I presents the results of different models described
in Section II. We can observe that the simple baseline model
was able to perform quite well for multiple scenarios which
involved initial velocities in at most one dimension. But as
soon as we added initial velocity of the ball in more than one
dimension, the controller had a hard time keeping up with

https://manipulation.csail.mit.edu/pick.html#virtual_wall

Fig. 8: The initial x, y positions and velocities of the balls
we used in testing the systems. All balls started from the

same initial z height above the iiwa.

the ball. This behavior is expected since this baseline method
simply executes a fixed trajectory and does not account for
the current state of the ball.

DiffIK Translational Projectile Matching without
SNOPT was the worst performing model amongst all the ap-
proaches. We suspect that the reason for its under-performance
was due to the controller commanding big changes in succes-
sive paddle velocities which meant that the Pseduo-Inverse
controller was exporting joint velocities which did not respect
the joint velocity limits of the Kuka iiwa arm. This observation
motivated us to constrain the joint velocities of the Kuka iiwa
arm so that its joint velocity limits are respected while the
end-effector is able to keep up with the commanded velocities,
which led to our next test case that uses SNOPT.

It can be observed that the first tests with DiffIK Trans-
lational Projectile Matching with SNOPT, produced signif-
icantly improved motions by a huge margin, hence demon-
strating the effectiveness of a Differential IK using SNOPT-
based approaches compared to the simple Pseudo-Inverse-
based approach. Even compared to the baseline approach,
this model fared well in most of the scenarios, particularly
scenarios 7 and 8 where the baseline struggled. On the other
hand, it did under-perform in scenario 2 which we suspect is
due to poor position and derivative gains.

As expected, the final approach, DiffIK Spatial Projectile
Matching with SNOPT performs well when compared to
simple translational model without SNOPT. However, we did
anticipate even better performance from this approach since
we are executing corrective behavior to try to keep the ball
at the center of paddle after initial contact is made. For some
scenarios, particularly scenarios 1, 3 and 6, this approach did
in fact outperform all the other approaches by big margins.
Once again, we believe poorly tuned gains made the problem

inherently harder for the controller to solve.
Next, we look at computation times, which we present in

Table II. We hypothesize that there is a correlation between
higher stability and higher computation times. In Table II,
we see that the baseline and translational projectile matching
without SNOPT approaches to be much faster than other alter-
natives that depend on SNOPT, which makes sense given the
potential compute cost of running optimization. The baseline
approach was the fastest since the controller just needed to
execute a pre-computed trajectory to complete the task. As
expected, the SNOPT based approaches took longer, which,
when considered in the context of results shown by Table I,
indicates that for better performance we have to give up some
computational efficiency.

As can be seen across the scenarios in Table I, this task
proved much more challenging than expected. While develop-
ing Catcher , we learned that we had to fine tune bespoke
parameters for each set of ball and paddle initial states to make
a successful catch and maximize contact.

For instance, we learned that the math and logic in Section
II-A is overly simplified. This fact was apparent in observing
that the paddle was sometimes a split-second too slow in
reaching pb[tcatch] (the ball would pass just under the paddle).
We attributed its lag to a shortcoming of the translational con-
troller in Section II-A, namely that it relied on generating an
instantaneous velocity at the start of its trajectory, vp[0], which
could be quite large. Instantaneous velocities are impossible if
we respect joint velocity limits. Further, we suspected that the
measured / actual joint velocities of the iiwa would differ from
the commanded joint velocities, leading to deviations from the
desired path as well. To overcome this issue, we sometimes
applied a scaling factor, s, to tcatch in Equations 4 and 5. We set
s ∈ [0, 1], and replaced tcatch with t′catch, where t′catch = stcatch.

Of course, we also found that the gains needed to be
tweaked for each scenario. For instance, we found that higher
relative x, y velocities required more aggressive gains on the
rotational corrections. Catches with smaller bounces required
less aggressive translational gains or we risked accidentally
sliding an otherwise stable ball off the paddle.

The final area we tweaked was the catch height, pbz[tcatch].
We had no guarantees of optimality with our choice. Through
our experimentation, we found that different heights produced
qualitatively varying catch performance.

IV. CONCLUSIONS

Our aim for this project was to impart similar level of
dexterity that humans utilize to catch a ping pong ball on
a hard paddle attached to 7-DOF Kuka iiwa manipulator. We
iterated from very simple controllers to more complex ones
that leverage optimization based routines to generate position
and velocity commands on the iiwa arm. We compared sys-
tem designs and found that a pipeline with Differential IK
and optimized joint constraints showed the best performance,
though at the expense of compute time. We had much more
success in the first state of our FSM, catching the ball, than
we did in the second state, stabilizing the ball on the paddle

Model/Scenario 1 2 3 4 5 6 7 8 9

Baseline 2.30 2.25 0.25 2.40 2.40 0.10 0.00 0.15 0.05

Translational Projectile Matching

without SNOPT
2.35 0.00 0.00 2.35 0.00 0.00 0.00 0.00 0.00

Translational Projectile Matching

with SNOPT
2.20 0.55 0.90 2.45 2.45 0.25 0.90 1.50 0.00

Spatial Projectile Matching

with SNOPT
2.60 0.50 2.30 0.40 0.15 1.65 0.05 0.05 0.05

TABLE I: This table showcases how the different approaches performed with respect to φ where each entry is reported in
seconds. Note that φ ∈ [0, 3] and higher values means better performance.

Model/Scenario 1 2 3 4 5 6 7 8 9

Baseline 8.96 9.21 9.16 8.98 9.49 9.02 8.87 9.34 9.22

Translational Projectile Matching

without SNOPT
13.68 14.37 14.00 13.84 12.95 13.64 14.25 14.19 14.15

Translational Projectile Matching

with SNOPT
79.26 82.55 82.28 76.57 83.35 79.95 79.74 80.83 84.96

Spatial Projectile Matching

with SNOPT
78.00 82.59 84.90 85.23 83.64 82.33 85.46 85.46 84.65

TABLE II: This table showcases how the different approaches performed in terms of computation time which is reported in
seconds. Note that lower values mean better performance.

surface. The challenge of catching a ping pong ball on a
paddle turned out to be significantly more difficult than we
anticipated. Modeling contact and effecting a ball in contact
with a frictionless surface were non-trivial problems that we
did not anticipate.

Although the developed models were able to perform well
on simpler tasks, we realize that there is still a lot of room
for improvement. Namely, we wonder if more aspects of the
problem could be performed in optimization. For instance,
we could have framed the translational kinematics problem as
an optimization problem. Likewise for the stability problem,
we wonder if there might be an elegant representation in
optimization. We also wonder if stabilizing a ball on a free-
floating frictionless surface is a problem that lends itself well
to Reinforcement Learning with a simple reward being how
close the ball is to the center of the paddle. Or perhaps
we could have tried a different approach by modeling the
stabilization problem as an inverted pendulum. Lastly, there
is a huge range of sampling based motion planners that
could have been effective in either state. Another area for
improvement is in detecting contact - we used a simple metric
based on the z heights of the ball and paddle, but a Signed-
Distance Function based approach may be more effective in
edge cases, particularly if the ball is bouncing wildly around
a paddle being held at an angle. We would have liked to try
any and all of these improvements, however, learning how to
effectively use Drake and simply run our simulation consumed
more time than we expected.

Finally, this project was instrumental in our efforts to

learn to be effective with Drake. We appreciate the hands on
experience as we found a minor bug 3, spent hours reading
Drake’s documentation, and got a chance to build and simulate
a unique manipulation task.

REFERENCES

[Beveridge and Shubert, 2020] M. Beveridge and R. Shubert. Robot juggler.
https://github.com/mattbev/robot-juggler, 2020.

[Gao et al., 2020] Wenbo Gao, Laura Graesser, Krzysztof Choromanski,
Xingyou Song, Nevena Lazic, Pannag Sanketi, Vikas Sindhwani, and
Navdeep Jaitly. Robotic table tennis with model-free reinforcement
learning, 2020.

[Gill et al., 2005] Philip E. Gill, Walter Murray, and Michael A. Saunders.
SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM
Review, 47(1):99–131, 2005.

[Liu et al., 2011] Yuwang Liu, Yuquan Leng, and Weijia Zhou. Analysis
of multi-fingered grasp and manipulation of ping-pong racket. Advanced
Engineering Forum, 2-3, 12 2011.

[Mülling et al., 2013] Katharina Mülling, Jens Kober, Oliver Kroemer, and
Jan Peters. Learning to select and generalize striking movements in robot
table tennis. The International Journal of Robotics Research, 32(3):263–
279, 2013.

[Rapp, 2011] Holger H. Rapp. A ping-pong ball catching and juggling robot:
A real-time framework for vision guided acting of an industrial robot
arm. In The 5th International Conference on Automation, Robotics and
Applications, pages 430–435, 2011.

[Tedrake and the Drake Development Team, 2019] Russ Tedrake and the
Drake Development Team. Drake: Model-based design and verification
for robotics, 2019.

3https://github.com/RobotLocomotion/drake/issues/16116

https://github.com/mattbev/robot-juggler
https://github.com/RobotLocomotion/drake/issues/16116

	Introduction and Related Work
	Approach
	Catching State Translational Kinematics
	Stabilization State Translational Kinematics
	Rotational Kinematics
	System Design
	Controller Design Iterations

	Evaluation and Discussion
	Conclusions
	References

