
Leveraging Classical Planning for Automatic Reward
Densification

Nishanth Kumar
njk@mit.edu

Willie McClinton
wbm3@mit.edu

Viraj Parimi
vparimi@mit.edu

∗

1 Introduction

A core challenge with scaling up Deep Reinforcement Learning (Deep RL) for use in robotic tasks of
practical interest is the task specification problem Agrawal [2021], which typically manifests as the
difficulty of reward design. In particular, most robotic tasks are naturally specified by a goal state (e.g.
the desired state of all objects for a "clean" room), which is captured by a ’one-hot’ reward signal (i.e
the agent is given positive reward when it is in the goal state and a small negative reward in every
other state). Unfortunately, such a reward signal is too sparse to optimize, even for state-of-the-art
algorithms. Thus, many RL researchers manually ’densify’ the reward (e.g. in the popular benchmark
MetaWorld problems Yu et al. [2019]). However, this can lead to undesirable behavior via "reward
hacking" Clark and Amodei [2016]. As a result, reward densification is often a laborious process of
tweaking the reward function to be more dense, training a Deep RL agent with the tweaked function,
then tweaking the reward function again to prevent any undesirable behavior, and so on.

Given both the tediousness and difficulty of manually tuning reward functions, there have been
several works that have attempted to either partially or fully automate this process. Several works
Zou et al. [2019], Memarian et al. [2021] attempt to do so with Machine Learning (ML) techniques
like meta-learning or self-supervision, but often require either small problem instances to train on, or
do not generalize well to settings where the probability of randomly encountering positive reward
is vanishingly small. Other works have provided the agent with access to additional information,
such as task plans Grzes and Kudenko [2008] or Linear Temporal Logic (LTL) formulae Jiang et al.
[2020]. However, these approaches have only been tried in simple, discrete domains that are poor
approximations of robotic tasks.

In order to reduce the difficulty of reward function design in continuous robotics environments, we
propose to develop a method that automatically densifies sparse, goal-based reward in robotic tasks
such that the optimal policy is preserved. In particular, we propose to do this by leveraging task plans
similar to Grzes and Kudenko [2008]. We hypothesize that for many robotic tasks, (1) while it is
difficult for humans to specify a dense reward that cannot be hacked, it is easy to specify an abstract
plannable model in PDDL McDermott et al. [1998] that conveys information about the dynamics
of the domain, and (2) that valid abstract plans within this model can be leveraged to automatically
densify sparse reward via potential-based reward shaping [Devlin and Kudenko, 2012] sufficiently
enough for state-of-the-art RL approaches to solve these tasks. We perform an extensive empirical
evaluation of our system across different PDDL models with varying granularity, choices of potential
functions, choices of learning algorithms (PPO Schulman et al. [2017] and SAC Haarnoja et al.
[2018]) and tasks. Overall, our findings suggest that intuitive PDDL models can help densify sparse
reward tasks and improve the performance of learning algorithms, but enabling these algorithms to
fully solve even simple robotic tasks still requires tuning of the PDDL models and potential shaping
functions.

∗For code and videos, see project webpage here

6.484 Computational Sensorimotor Learning Final Project (Spring 2022).

http://nishanthjkumar.com/airobot_reward_densification/

2 Related Work

Recent work has attempted to leverage ML techniques to automatically densify sparse reward. Zou
et al. [2019] leverage meta-learning by training the agent on a number of smaller problem instances
and then learning how best to initialize dense reward in a new problem. Importantly, these smaller
instances must share the same reward function structure. By contrast, our approach does not require
smaller problem instances and does not require the exact same reward function structure to hold across
problems (we can generalize to any goal that is expressable within the PDDL model). Memarian et al.
[2021] use the problem’s sparse reward to generate a ranking over trajectories that can then be used to
automatically densify the reward. However, this requires that the agent is able to generate trajectories
via exploration that achieve some reward, which is often difficult in most robotic tasks.

Another widely studied approach to reward densification is to exploit structure in the reward function.
More specifically Toro Icarte et al. [2022] proposed a reward machine where the idea is to expose the
internal reward structure to an RL agent so that it can exploit it to learn better policies in a sample
efficient manner. Similar to this work, there have been other approaches like Jiang et al. [2020] which
provide the domain knowledge using Linear Temporal Logic (LTL) formulae. In contrast to these
works, our approach requires neither a particularly structured reward function that can be exposed to
an agent, nor input LTL formulae. Moreover, we focus on attempting to solve continuous robotic
domains whereas most of these works apply their proposed techniques to discrete environments.

Early work by Grzes and Kudenko [2008] leveraged STRIPS style operator knowledge for discrete
domains for guiding reward shaping. Building on this, Gehring et al. [2021] proposes the idea of
leveraging domain-independent heuristic functions that are widely used in the classical planning
literature to act as dense reward generators. These works have only explored discrete domains and
defined a fixed potential function over the states. We take significant inspiration from these ideas and
intend to work towards reward shaping applied to continuous domains.

3 Problem Formulation

We consider an environment represented as a Markov Decision Processes (MDP), in which an agent
must learn to reach a given goal. A MDP is defined by the tuple ⟨S,A, T,R, γ⟩, where S is the state
space; A is a continuous action space; T : S ×A× S → [0, 1] is the transition function, which gives
the probability of the next state conditioned on the previous state and action; R : S → R is the reward
function that will generate a sparse reward only if the goal is reached; and γ : S → [0, 1] is the
discount rate. The objective in our MDP is to learn a policy π : S → [0, 1]|A| probability distribution
over the action space conditioned on the current state that maximizes the expected, cumulative, and
discounted reward.

Given an MDP, we propose to also specify a PDDL model that can be seen as a tuple ⟨Ψ,SΨ,Ω,F ,O⟩
that defines deterministic high-level transition model over the MDP. Here, Ψ is a set of predicates, SΨ
represents the space of high-level states, Ω is the space of high-level operators grounded by objects
O, and partial function F : SΨ × Ω ↛ SΨ defines the transition dynamics.

A predicate ψ is characterized by an ordered list of variables (λ1, ..., λm). For instance, the predicate
Holding may, given a state and two objects, robot and block, describe whether the block is held by
the robot in this state. A lifted atom is a predicate with variables (e.g., Holding(?robot, ?block)). A
ground atom ψ consists of a predicate ψ and objects (o1, ..., om).

Definition 1 (High-level state) A high-level state ŝ is the set of ground atoms under Ψ that hold true
in some MDP state s:

ŝ = ABSTRACT(s,Ψ)

Definition 2 (Operator) An operator is a tuple ω = ⟨PAR, PRE, EFF+, EFF−⟩ where: PAR is an
ordered list of variables, and PRE, EFF+, EFF− are preconditions, add effects, and delete effects
respectively, each a set of lifted atoms over Ψ and PAR.

Definition 3 (Ground operator) A ground operator ω = ⟨ω, δ⟩ is an operator ω and a substitution
δ : PAR → O mapping parameters to objects. We use PRE, EFF+, and EFF− to denote the ground
preconditions, ground add effects, and ground delete effects, where variables in PAR are substituted
with objects under δ.

2

Definition 4 (High-level transition model) The high-level transition model induced by predicates
Ψ and operators Ω is a partial function F : SΨ ×Ω ↛ SΨ. F(ŝ, ω) is only defined if ω is applicable
in s: PRE ⊆ ŝ. If defined, F(ŝ, ω) ≜ (ŝ− EFF−) ∪ EFF+.

With this high-level transition model we can come up with a plan P : [ŝ0, ω1, ..., ωf , ŝf] using an
off-the-shelf PDDL planner like Fast Downward Helmert [2006]. This plan specifies a sequence of
high-level states (subgoals), which can then be used to derive our potential-based reward function.

The goal of reward shaping is to provide guidance to our policy learning algorithm via a denser
reward that encodes subgoal knowledge, in order to reduce the difficulty of exploration for an RL
algorithm. For example the new shaped reward function R̂(s) = R(s) + F (s, s′), where F (s, s′)
is the state-based bonus shaping the reward, can be used instead of R(s) to incentivize beneficial
actions during training. Naturally, if reward shaping is used improperly it can change the optimal
policy and lead to unintended behavior. To deal with this problem, potential-based reward shaping
Ng et al. [1999] was proposed as the difference of some potential function ϕ defined over a source s
and a destination state s′:

F (s, s′) = γϕ(s′)− ϕ(s)

In the context of an abstract plan, we want the potential function to be applied to abstract states
coming from the plan. We can obtain such states (ŝ) from the low-level state via Definition 1 Thus:

F (s, s′) = γϕ(ŝ′)− ϕ(ŝ)

Potential-based reward shaping has the property that an optimal policy learned with the shaped reward
R̂ is guaranteed to be equivalent to the one learnt with the original reward R Ng et al. [1999]. Given
some plan P induced by a high-level transition model F , we can obtain a series of subgoal states Ŝ
for the agent to reach sequentially by taking each grounded operator in P and applying it from the
initial state onward. Given a sequence of subgoals Ŝ, we will follow Grzes and Kudenko [2008] and
define ϕ(s) such that:

ϕ(ŝ) = step(ŝ)

where the function step(ŝ) returns the index of step in the plan at which the given high-level state ŝ
appears. We refer to this choice of potential function as a plan-based potential function.

Unfortunately, this cannot be used directly since it does not assign a potential for non-plan states,
which are likely to be encountered during the course of exploration. Grzes and Kudenko [2008]
address this issue by keeping track of the most-recent plan state that the agent achieves. However,
it is not immediately obvious that this is correct, since doing this will make the potential function
no longer solely dependent on the current state s2. Intuitively however, we can see that such a ϕ
will still preserve optimal policies because we can just change the MDP’s state-space to include the
most-recent subgoal accomplished as part of the state (doing so will not change the optimal policy
because it will not change the reward obtained by any particular trajectory). A formal proof of this is
presented in the Appendix (Section 8.1).

Devlin and Kudenko [2012] showed that potential functions can be parameterized by both the state
and timestep:

F (s, t, s′, t′) = γϕ(ŝ′, t′)− ϕ(ŝ, t)

where t is the time the agent arrived at previous state s and t′ is the current time when arriving at the
current state s′ (i.e. t < t′). We refer to this choice of potential function as a dynamic plan-based
potential function.

4 Method

In order to use either a plan-based or dynamic plan-based potential function as described in the
previous section, it is necessary to be able to compute a high-level state given a particular low-level
state. In general, specifying a function to accomplish this computation might be rather difficult.

2To the best of our knowledge, none of the related works that use this technique presented a proof that doing
so preserves the optimal policy.

3

+

Training Evaluation

Abstract
Model

Specification

Potential-based Reward Shaping

PDDL Model + Classifiers

Human
Expert

𝜙

Figure 1: An overview of our system for automatic reward densification. The process illustrated in the top
red box represents the typical RL pipeline. In our system, a human expert provides an abstract model of the
environment consisting of a hand-specified PDDL model as well as classifier functions that take in a state and
output the value of a particular ground predicate. Given this information, we can automatically increase the
density of the original sparse reward and thereby improve the RL training process.

However, since a high-level state is nothing but a collection of predicates that are ground over all the
objects in a problem, we can compute such a state by simply evaluating the values of all groundings
of all predicates in the domain over all objects in the problem. To do this, we only require the
specification of a binary predicate classifier cψ for every predicate ψ defined as follows:

Definition 5 (Predicate Classifier) A predicate classifier function cψ(o1, ..., om, s) is a function
associated with an m-arity predicate ψ that takes in m objects of the correct type and a low-level
state and outputs a binary value indicating whether or not the predicate ground with the specified
objects holds in the current state.

cψ(o1, ..., om, s) : s 7→ {True, False},∀s ∈ S

Since PDDL domains do not generally contain a large number of predicates, requiring one classifier
per predicate is a relatively reasonable demand from a human designer.

Our overall approach is to have human designers specify abstract models and associated predicate
classifier functions for robotic tasks with sparse, goal-based reward, and then leverage these to
automatically increase the density of the reward when an RL agent is trained on such a task. A
high-level overview of this process is depicted in Fig. 1. The main unexplained part of this process is
the computation of the potential-based reward given a state (illustrated as the green box in the Figure).
The pseudocode for this process is shown in Algorithm 1 below. Intuitively, we first run a planner on
the input PDDL to produce a plan. We then apply each action of this plan to produce a sequence of
high-level subgoals. We initialize the ‘max_idx’ variable to 0 and then simply call the pseudocode
from Algorithm 1 for every state and timestep encountered during the rest of the trajectory. Note that
we do not incentivize or penalize the agent to follow the given plan to account for scenarios where
the agent might be able to learn better policies.

4.1 Potential Functions

We evaluated different choices of potential functions: (1) plan-based potential, (2) dynamic plan-
based potential where we tried two variants, (i) dynamic time-varying potential, and (ii) dynamic
distance-varying potential. Our plan-based potential is an implementation of the reward shaping
seen in Grzes and Kudenko [2008] where we use the maximum plan step described above as ϕ.
Our dynamic time-varying potential is similar to our plan-based potential function, but it scales the
maximum plan step reward by a factor of 1/t where t is the current time step, this incentivizes the
agent to achieve the plan as quickly as possible due to the diminishing returns of achieving a subgoal
later. In this case:

ϕ(ŝ, t) = (1/t)× step(ŝ) (dynamic time-varying)

4

Algorithm 1: Automatic Reward Densification
Input :(1) set of predicate classifiers Cψ ,

(2) Ŝ: a list of high-level subgoals that are encountered during execution of a valid plan,
(3) R(s): the original MDP’s reward function,
(4) s: the current low-level state,
(5) t: the current time-step in the trajectory,
(6) max_idx: the max. index of a state in Ŝ that’s been reached in the current trajectory,
(7) ϕ(ŝ, t): a choice of potential function

1 ŝ← ABSTRACT(s, Cψ)
2 R̂(s)← R(s) + ϕ(ŝ, t)− ϕ(Ŝ[max_idx], t− 1)
3 curr_plan_step← Ŝ.index(ŝ) // finds index of ŝ in Ŝ
4 if curr_plan_step > max_idx then
5 max_idx← curr_plan_step
6 end
7 return R̂(s)

We tried other functions of t to scale the reward like e−t or k/t where k is some scalar, but neither
performed better than 1/t. Lastly, our dynamic distance-varying potential tries to use the intuition
that much of the movement between subgoals provided by plans for many arm-based robotic tasks is
through free space (i.e, task plans will provide waypoints such that the straight-line path between
consequent subgoals is not obstructed). We define

ϕ(ŝ) = −dist(ŝ, loc(Ŝ[max_idx + 1])), (dynamic distance-varying)

where s is the current low-level state, ŝ is the corresponding abstract state and loc(Ŝ[max_idx + 1])
is the location of the end-effector (ee) needed to achieve the next subgoal in the plan. During tasks
like push where multiple objects are under consideration (each with individual location subgoals) we
use the distance between each object in the subgoal separately, trying to achieve each individually
with the end-effector given priority. For our pushing environment this looks like this:

ϕ(ŝ) =

{
−dist(ŝee, loc(Ŝ[max_idx + 1]ee)), if ee is not at subgoal
−dist(ŝobj , loc(Ŝ[max_idx + 1]obj)), otherwise

5 Experimental Evaluation

5.1 Environment Details

For the purpose of experiments we use the AIRobot Chen et al. [2019] testbed (provided in HW4).
We started off with the reaching and pushing environments that were already provided and then
extended the reaching environment to a more complex scenario which we call the maze-reach
environment as shown in the Figure 2. In the reaching and maze-reach environments, the observation
space include (xe, ye) position of the end-effector while the push environment additionally contains
(xo, yo) position of the target object. All environments have 2D continuous action space, (∆x,∆y).
The end-effector can move in the x direction by ∆x, y direction by ∆y. The goal of the reaching and
maze-reach environments is to reach a pre-specified goal location and stay there till the end of the
episode. The goal of the push environment is to push a target object to a pre-specified goal location.

As part of our experiments, we first ran the baselines using handcrafted sparse and dense rewards
similar to the solutions for HW4. Later we ran the plan-based potential using PDDL files that created
plans going through (i) a single subgoal, (ii) multiple (3) subgoals and (iii) a number of grid locations
(after discretizing the state-space into a dense grid). To enable us to run these experiments, we wrote
several PDDL models for each of the above cases and used the widely benchmarked Fast Downward
planner to generate the high-level symbolic plan. We used these same PDDL models to test both
variants of dynamic plan-based potentials as (described in Section 4.1). Importantly, note that we
actually spent some time experimenting with using a constant multiplier by which to multiply this
potential function in order for our agents to achieve good performance.

5

Figure 2: (Left): The reaching environment, (Middle): The pushing environment, (Right): The complex
maze-reach environment with a maze to navigate around.

sparse_hcdense_hc pddl
single

subgoal

pddl
multi

subgoal

pddl
grid_based

pddl
single

subgoal
basic_drs

pddl
multi

subgoal
basic_drs

pddl
grid_based
basic_drs

pddl
single

subgoal
dist_drs

pddl
multi

subgoal
dist_drs

pddl
grid_based

dist_drs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

an
ce

 to
 G

oa
l

PPO Performance on Reaching and Pushing Tasks
Reaching
Pushing

Figure 3: Our reward shaping methods versus a hand-crafted dense reward function on the reaching and
pushing environments using PPO. Distance to goal of a trained policy after a 25 step episode, for all 3 reward
shaping methods with all 3 PDDL models. All results are averaged over 3 seeds where the horizontal black bars
denote standard deviations. Here, our multi-goal and grid-based reward shaping performs better than sparse
reward and dynamic distance-varying reward shaping performs even better than our dense hand-crafted reward.

We ran each of our experiments with 3 different seeds to see if the performance of our developed
approaches can be replicated for different initializations of the algorithms. Additionally, since our
proposed approach is agnostic to the choice of learning algorithm, we also decided to use PPO and
SAC as implemented in the EasyRL repository Chen [2020]. In total, across the reaching and pushing
environments, we ran 132 experiments. Based on the results of these, discussed in Section 5.2, we
ran a limited subset (12) of experiments for the final maze-reach environment.

5.2 Results

Our main results are shown in Figures 3 and 4. From these, a few trends of note are:

• SAC seems unable to learn good policies for all our densification approaches, even the
manually-specified dense reward. We believe this is most-likely due us choosing the default
hyperparameters available in EasyRL and these were not good enough for our tasks.

• With PPO, all of our densification approaches find a better policy than the original sparse
reward. Moreover, the more granular the PDDL (grid-based > multiple subgoal > single
subgoal), the better the performance quantified in terms of distance to goal. This is expected
since the more granular the PDDL, the more dense the reward function is and the more
likely the agent is going to encounter some positive reward. The glaring exception to this is

6

sparse_hcdense_hc pddl
single

subgoal

pddl
multi

subgoal

pddl
grid_based

pddl
single

subgoal
basic_drs

pddl
multi

subgoal
basic_drs

pddl
grid_based
basic_drs

pddl
single

subgoal
dist_drs

pddl
multi

subgoal
dist_drs

pddl
grid_based

dist_drs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
st

an
ce

 to
 G

oa
l

SAC Performance on Reaching and Pushing Tasks
Reaching
Pushing

Figure 4: Our reward shaping methods versus a hand-crafted dense reward function on the reaching and
pushing environments using SAC. Distance to goal for a trained SAC policy after a 25 step episode, for all 3
reward shaping methods with all 3 PDDL models. As you can see, despite results not turning out as well as PPO
some of our reward shaping methods perform better than sparse reward and all of the dynamic distance-based
reward shaping do as well as our dense hand-crafted reward function.

sparse_hc pddl
single

subgoal
dist_drs

pddl
multi

subgoal
dist_drs

pddl
grid_based

dist_drs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Di
st

an
ce

 to
 G

oa
l

PPO Performance on Maze Reaching Task

Figure 5: Our reward shaping methods versus a hand-crafted dense reward function on the maze reaching
environment using PPO. Distance to goal of the block for a trained SAC policy after a 25 step episode, for all 3
reward shaping methods with all 3 PDDL models. Our reward shaping methods perform better than the original
sparse reward task, demonstrating our approaches usability on hard to specify reward functions.

the grid_based PDDL for the pushing task. We believe that the issue lies in the fact that the
plan involves the agent approaching the block from below, and this often causes it to push
the block away from the goal during training.

• The dynamic time-varying potential shaping did worse than the plan-based potential. This
shows that incorporating the 1/t factor into the potential function was not useful or even
helpful for these tasks.

7

• Out of all of our approaches, dynamic distance-varying potential worked best (with the
single subgoal and multiple subgoal PDDLs) and was able to consistently produce policies
that solved the task. This makes sense because this approach provides the densest reward
out of all our approaches.

Given these trends, we chose to try only our best approach (dynamic distance-varying potential with
PPO) in the challenging maze-reach task. Importantly, for this task, we did not tune the constant
factor used to weight the function, but rather used the same from the reaching environment. Moreover,
for the single subgoal and multiple subgoal PDDL cases, this environment happens to violate our
free-space motion assumption (i.e, the straight line path between consequent subgoals happens to be
obstructed). Our results are displayed in Figure 5.

Considering Figure 5, it seems that the single subgoal and multiple subgoal methods seemed to
out perform the higher granularity grid-based method. However, upon closer qualitative inspection,
we found that the single subgoal and multiple subgoal polices entered a local minimum on the
other-side of an obstructing wall preventing it from reaching the goal, while the grid-based method
moved around the obstructing wall and looked qualitatively closer to the optimal policy. While these
approaches did enable the agent to learn a better policy than with the sparse handcrafted reward, none
of them enabled the agent to learn a policy that actually solves this task.

6 Conclusion and Discussion

In summary, we implemented a system that is able to leverage classical planning over human-
specified PDDL models to automatically increase the density of robotic tasks with sparse, goal-based
reward. We proved that an existing approach (plan-based potential) used in discrete environments is
theoretically sound, implemented versions of previous approaches, and evaluated their utility to help
improve performance on two robotic tasks with continuous state-action spaces and PDDL models
with different granularities. Inspired by these approaches, we also developed our own potential-based
shaping approach (dynamic distance-varying potential) and evaluated its utility across three different
robotic tasks. Our results indicate that the granularity of the PDDL model plays an important role
in how useful it is, and that while using our shaped reward generally outperforms using only the
original sparse reward, outperforming a handcrafted dense reward usually requires a lot of tuning of
the PDDL model and weighting assigned to various terms in the potential function.

While our system has shown some promise, there are a variety of important limitations. The biggest
of these is that there is still a considerable amount of tuning required to get agents to reliably complete
tasks. We might be able to overcome this by combining information from different PDDL models
together, utilizing more sophisticated exploration algorithms, or providing other ways for designers
to specify useful guiding information to the agent (e.g. natural language corrections to behavior).
Additionally, while our methods of shaping do preserve the optimal policy, they may cause the agent
to fall into sub-optimal local return maxima because of a sub-optimal plan.

7 Contributions

Nishanth: I contributed the idea of trying out a time-varying potential function. I also came up with
the idea to re-use the environments from HW4 of the class. I contributed heavily to the implementation
of our ideas, particularly the architecture of our repository that enabled us to easily run particular
collections of experiments. Finally, I helped prove the theorem in Section 8.1 and also helped write
several sections of this paper.

Willie: I helped decide the direction of the project and possible environments we could use to
evaluate our ideas. I also contributed heavily to the implementation of our project, particularly the
implementation of our three potential based reward functions and the creation of scripts to run our
experiments. Finally, I proved the theorem in Section 8.1 and wrote several sections of this paper.

Viraj: I contributed heavily to the codebase especially towards designing the PDDL models and
automating the grid-based state generation process. I also worked on developing the complex maze-
reach environment. After looking at the performance of the simple and dynamic plan-based potential
functions, I proposed the idea of densifying the potential space using distance functions. I also made
the website to showcase all the videos and finally I helped write several sections of this paper as well.

8

8 Appendix

8.1 Proof that optimal policy is preserved by plan-based potential functions

Suppose our chosen environment is modeled by an MDP M = ⟨S,A,R, T, γ⟩. Let us define a
new MDP M+ = ⟨S+, A,R+, T+, γ⟩. Here, a state s+i ∈ S+ is composed of a corresponding
state s from M and a variable ni that represents the most recent plan step the agent has achieved:
s+i = ⟨si, ni⟩. The reward function R+(s+i) = R+(⟨si, ni⟩) = R(si) : ∀s+i ∈ S+, and transition
function T+(s+i , ai) = T+(⟨si, ni⟩, ai) = ⟨T (si, ai), χ(si, ni)⟩ = s+i+1 : ∀s+i ∈ S+ ∧ ai ∈ A
where χ is a function describing how ni changes between transitions (i.e. whether we successfully
accomplished the subgoal in our plan or not). Given these, we can define a return G for a policy π:

Gπ = Es0∈S [R(s0) +R(T (s0, a0)) +R(T (s1, a1)) + . . .] and π(si, ai) = ai+1 (1)

and similarly G given π+:

Gπ+ = Es+0 ∈S+ [R
+(s+0) +R+(T+(s+0 , a0)) + . . .] where π+(s+i , ai) = ai+1 (2)

We want to show ∀Gπ+ , Gπ+ = Gπ where π(si) = π+(⟨si, ni⟩) = ai+1 and π+(⟨si, ni⟩) =
π+(⟨si, nj⟩) = π+(si) ∀ ni, nj ∈ N
We know by definition:

Gπ+ = Es+0 ∈S+ [R
+(s+0) +R+(T+(s+0 , a0)) +R+(T+(s+1 , a1)) + . . .]

=⇒ Gπ+ = Es+0 ∈S+ [R
+(⟨s0, n0⟩) +R+(T+(⟨s0, n0⟩, a0)) + . . .]

Now, if we substitute our definition of the transition function T+ into this above equation, we obtain:

Gπ+ = Es+0 ∈S+ [R
+(⟨s0, n0⟩) +R+(⟨s1,Ψ(s0, n0)⟩) + . . .]

given our definition of transition function T+ and thus, we can substitute in our definition for R+ to
obtain:

Gπ+ = Es+0 ∈S+ [R(s0) +R(T (s0, a0)) +R(T (s1, a1)) + . . .] = Gπ (3)

Therefore we know that our optimal policy is preserved in our new MDP because for all policies
return is preserved. 3

References
Pulkit Agrawal. The task specification problem. In 5th Annual Conference on Robot Learning, Blue

Sky Submission Track, 2021. URL https://openreview.net/forum?id=cBdnThrYkV7.

Tao Chen. EasyRL. https://github.com/taochenshh/easyrl, 2020.

Tao Chen, Anthony Simeonov, and Pulkit Agrawal. AIRobot. https://github.com/
Improbable-AI/airobot, 2019.

Jack Clark and Dario Amodei. Faulty reward functions in the wild. Internet: https://blog. openai.
com/faulty-reward-functions, 2016.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th international conference on autonomous agents and multiagent systems, pages 433–440.
IFAAMAS, 2012.

Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kaelbling, Shirin Sohrabi,
and Michael Katz. Reinforcement learning for classical planning: Viewing heuristics as dense
reward generators. CoRR, abs/2109.14830, 2021. URL https://arxiv.org/abs/2109.14830.

3Note that in the last step we take an expectation over s0
+ ∈ S+ not s0 ∈ S, really it should be an

expectation on the set of initial states which would be the same size where s0
+ = ⟨s0, 0⟩, ∀s0+ ∈ S+ and

∀s0 ∈ S+.

9

https://openreview.net/forum?id=cBdnThrYkV7
https://github.com/taochenshh/easyrl
https://github.com/Improbable-AI/airobot
https://github.com/Improbable-AI/airobot
https://arxiv.org/abs/2109.14830

Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforcement learning. In 2008
4th International IEEE Conference Intelligent Systems, volume 2, pages 10–22–10–29, 2008. doi:
10.1109/IS.2008.4670492.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Yuqian Jiang, Sudarshanan Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-
logic-based reward shaping for continuing learning tasks. CoRR, abs/2007.01498, 2020. URL
https://arxiv.org/abs/2007.01498.

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M.
Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language.
1998.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Ufuk Topcu, and Scott Niekum. Self-supervised
online reward shaping in sparse-reward environments. CoRR, abs/2103.04529, 2021. URL
https://arxiv.org/abs/2103.04529.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pages 278–287, 1999.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208, Jan 2022. ISSN 1076-9757. doi: 10.1613/jair.1.12440. URL
http://dx.doi.org/10.1613/jair.1.12440.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.10897.

Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward shaping via meta-learning,
2019. URL https://arxiv.org/abs/1901.09330.

10

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2007.01498
https://arxiv.org/abs/2103.04529
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1613/jair.1.12440
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1901.09330

	Introduction
	Related Work
	Problem Formulation
	Method
	Potential Functions

	Experimental Evaluation
	Environment Details
	Results

	Conclusion and Discussion
	Contributions
	Appendix
	Proof that optimal policy is preserved by plan-based potential functions

