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Abstract

Deep Reinforcement Learning (DRL) has garnered substan-
tial acclaim for its versatility and widespread applications
across diverse domains. Aligned with human-like learning,
DRL is grounded in the fundamental principle of learning
from interaction, wherein agents dynamically adjust behav-
ior based on environmental feedback in the form of rewards.
This iterative trial-and-error process, mirroring human learn-
ing, underscores the importance of observation, experimen-
tation, and feedback in shaping understanding and behavior.
DRL agents, trained to navigate complex surroundings, refine
their knowledge through hierarchical and abstract representa-
tions, empowered by deep neural networks. These representa-
tions enable efficient handling of long-horizon tasks and flex-
ible adaptation to novel situations, akin to the human abil-
ity to construct mental models for comprehending complex
concepts and predicting outcomes. Hence, abstract represen-
tation building emerges as a critical aspect in the learning
processes of both artificial agents and human learners, partic-
ularly in long-horizon tasks. Furthermore, human decision-
making, deeply rooted in evolutionary history, exhibits a re-
markable capacity to balance the tradeoff between risk and
cost across various domains. This cognitive process involves
assessing potential negative consequences, evaluating factors
such as the likelihood of adverse outcomes, severity of poten-
tial harm, and overall uncertainty. Humans intuitively gauge
inherent risks and adeptly weigh associated costs, extend-
ing beyond monetary expenses to include time, effort, and
opportunity costs. The nuanced ability of humans to con-
sider the tradeoff between risk and cost highlights the com-
plexity and adaptability of human decision-making, a skill
lacking in typical DRL agents. Principles like these derived
from human-like learning present an avenue for inspiring ad-
vancements in DRL, fostering the development of more adap-
tive and intelligent artificial agents. Motivated by these ob-
servations and focusing on practical challenges in robotics,
our efforts target risk-aware stochastic sequential decision-
making problem which is crucial for tasks with extended time
frames and varied strategies. A novel integration of model-
based conditional planning with DRL is proposed, inspired
by hierarchical techniques. This approach breaks down com-
plex tasks into manageable subtasks(motion primitives), en-
suring safety constraints and informed decision-making. Un-
like existing methods, our approach addresses motion prim-
itive improvement iteratively, employing diverse prioritiza-
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tion functions to guide the search process effectively. This
risk-bounded planning algorithm seamlessly integrates con-
ditional planning and motion primitive learning, prioritizing
computational efforts for enhanced efficiency within speci-
fied time limits.

Motivation
Deep Reinforcement Learning (DRL) has gained substantial
popularity over the decades due to its remarkable versatil-
ity and broad applications across diverse domains (Li 2017;
Kaelbling, Littman, and Moore 1996). Parallel to human-
like learning, DRL is deeply rooted in the fundamental prin-
ciple of learning from interaction, where agents dynamically
adapt their behavior based on current environmental states
and feedback in the form of rewards. This iterative trial-and-
error process mirrors human learning, emphasizing obser-
vation, experimentation, and feedback shaping understand-
ing and behavior. Trained DRL agents navigate complex
surroundings, refining their knowledge through hierarchi-
cal and abstract representations. These representations, em-
powered by deep neural networks, enable them to efficiently
tackle long-horizon tasks and adapt flexibly to novel situa-
tions. This parallels the human ability to construct mental
models for comprehending complex concepts and predict-
ing outcomes, highlighting the importance of abstract repre-
sentation building in the learning processes of both artificial
agents and human learners, especially in long-horizon tasks.

Moreover, human decision-making involves a remark-
able capacity to balance the tradeoff between risk and cost,
deeply rooted in evolutionary history. This cognitive pro-
cess is intrinsic to human decision-making across various
domains. When assessing risk, humans consider potential
negative consequences, evaluating factors such as the like-
lihood of adverse outcomes, severity of potential harm, and
overall uncertainty. Drawing upon experiences and learned
knowledge, humans intuitively gauge the inherent risk in
a decision. Simultaneously, they adeptly weigh associated
costs, extending beyond monetary expenses to include re-
sources like time, effort, and opportunity costs. Individuals
optimize decisions by balancing potential benefits and re-
quired resources, with the tradeoff highly contextual. In situ-
ations where potential rewards outweigh perceived risks and
costs, individuals may opt for an adventurous course. Con-
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Figure 1: (a) An example of a 2D environment showing obstacles (polygons), the start location (red circle) and goal region
(green circle), (b) Set of landmarks generated by modified PRM-based technique resulting in G, (c) An example of two candidate
policies returned by the C-SSP solver, where the red policy is safer but longer, and the green is riskier but shorter, (d) An example
of the conditional plan generated by the C-SSP solver for both policies where it is preferable to switch to the low-cost policy if
we train the associated motion primitives for longer time.

Figure 2: Overview of the proposed approach.

versely, excessive risks or costs may favor a more conser-
vative approach. The nuanced ability of humans to consider
the tradeoff between risk and cost showcases the complexity
and adaptability of human decision-making, a skill lacking
in typical DRL agents. Principles derived from human-like
learning could inspire advancements in DRL, fostering more
adaptive and intelligent artificial agents.

In our pursuit of realizing intelligent and adaptive agents,
our focus addresses practical challenges in robotics. Nu-
merous robotic tasks demand actions over extended time
frames, offering multiple strategies with varying risks and
efficiencies. Consider a navigation problem where the goal
is to reach a destination from a starting point within an en-
vironment filled with unknown obstacles. Training a DRL
agent for direct navigation proves challenging, especially for
long-horizon tasks. Convergence on a policy becomes diffi-
cult, compounded by the complexity of ensuring safety, as
reaching the goal should not compromise collision avoid-
ance. The inherent stochasticity in DRL training introduces
unpredictability, making consistent success impossible to
guarantee. However, due to its probabilistic nature, bounds
on associated risks can be established. Our objective is to
identify scalable strategies empowering agents to navigate
obstacle-filled environments while adhering to a predefined

risk-bound, ensuring respect for safety constraints and in-
formed decision-making to achieve the goal. The presence
of inherent stochasticity in DRL policies transforms the
navigation problem into a risk-aware stochastic sequential
decision-making challenge.

Our Idea
Our innovative approach to addressing risk-aware stochas-
tic sequential decision-making problems involves an inte-
gration of a hybrid methodology, combining model-based
conditional planning with DRL. The overarching goal is to
ensure an agent reaches its predetermined destination from
an initial state while guaranteeing the risk of failure remains
below a user-defined threshold (∆). Inspired by hierarchical
techniques, particularly the option framework (Sutton, Pre-
cup, and Singh 1999), we break down the problem’s com-
plexity by leveraging intermediate landmarks and learning
motion primitives between them. This hierarchical decom-
position mirrors human learning patterns, representing intri-
cate tasks as more manageable subtasks.

What sets our idea apart from existing approaches like
(Sutton, Precup, and Singh 1999) is twofold. Firstly, after
learning a set of motion primitives between landmarks, we
utilize conditional planning to derive a policy, ensuring the
failure probability stays below the user-specified threshold.
Departing from treating this primitive chaining problem as
a conventional path planning task, we approach it as a con-
strained stochastic shortest path problem (C-SSP) (Hong and
Williams 2023). This allows us to manage the failure prob-
ability associated with the motion primitives effectively. In
the C-SSP formulation, each motion primitive is associated
with two outcomes: success and failure in reaching its local
goal. The conditional planner then seeks a plan with a fail-
ure probability less than or equal to the given risk-bound,
guaranteeing a higher success rate for the overall policy.
Secondly, acknowledging finite computational resources, we
prioritize improving motion primitives crucial for enhanc-
ing the overall policy. To tackle this challenge, our approach
adopts an iterative strategy alternating between motion prim-
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itive improvement and conditional planning, expediting con-
vergence towards the optimal policy.

With the iterative approach’s focus on selectively improv-
ing motion primitives, the choice of a prioritization rule be-
comes pivotal in guiding the search process. Our idea ex-
plores a diverse set of prioritization functions, ranging from
simple greedy selection strategies to advanced methods such
as adaptive approaches like upper confidence bound and
expert methods prominently found in the bandits literature
(Bubeck and Slivkins 2012). This exploration aims to iden-
tify the most effective strategies for the primitive improver,
mirroring the way humans consider the tradeoff between the
risk and cost of a policy to make informed decisions.

Illustrated in Figure 2, our risk-bounded planning algo-
rithm seamlessly integrates conditional planning and mo-
tion primitive learning iteratively. The process commences
with the discovery of landmarks and the construction of a
roadmap graph from a Markov Decision Process (MDP) in-
stance. Our approach places particular emphasis on learn-
ing motion primitives between proximate landmarks using
the primitive learner (Figure 1b). Subsequently, we craft a
policy that bounds the failure probability for reaching the
goal from the initial state, leveraging the conditional plan-
ner (Figure 1c and 1d). Additionally, by adopting an iter-
ative selective improvement strategy through the primitive
improver, we strategically allocate computational effort to
enhance the overall plan’s quality within a given time limit,
making our approach computationally efficient.
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