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Abstract

Planning in mission-critical systems like deep-space habitats with onboard
robotic systems must be robust to unforeseen circumstances. Such systems
are expected to complete a set of goals with different deadlines each day
for routine maintenance while also accounting for emergencies. With
the presence of humans within the habitat, the robotic systems can be
required to perform specific tasks while possibly collaborating with the
humans. Further, since the habitat can support multiple robots, this
becomes a source of contention as they have to share the limited set
of onboard resources. This dynamic between the humans, robots, and
the habitat generates a complex system where failures at any level can
cause significant delays leading to temporal uncertainty. Such delays can
have huge implications depending on whether or not the delay causes the
system to miss a goal’s deadline. Hence, it becomes crucial for the planner
to address the overall schedule within the context of the current temporal
deadlines of the goals and the resource constraints within the environment.
Assuming a known map of the environment and a fixed horizon time,
one can develop a schedule for the robotic systems that accounts for
such temporal uncertainty and resource constraints by leveraging the
timeline-based planning framework. To this end, this thesis proposes
T-HTN, a novel planner that extends the Hierarchical Task Networks
(HTN) model by incorporating temporal reasoning via flexible timeline
structures to produce plans that respect the goal’s deadlines and the
complex resource constraints introduced in multi-robot scenarios. T-HTN
is a robust extension to a timeline-based planner whose efficacy has been
tested on multiple example scenarios within a simulation environment.
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Chapter 1

Introduction

1.1 Motivation

Overall management of spacecraft activities on board near-earth habitats (ISS) has

always been a manual, human-driven process supported by ground-based crew schedul-

ing tools. Similarly, management of any onboard robotic systems has typically been

planned, rehearsed, and controlled from the ground with the assistance of astronauts

on board the habitat. The lack of real-time communications mandates greater au-

tonomy in spacecraft planning and control in moving to deep space environments.

With the prospect of deep space habitats being unoccupied by humans for significant

periods, the need for mechanisms to coordinate the actions of multiple robotic and

autonomous systems becomes increasingly important to achieve the safe, robust, and

efficient maintenance of spacecraft subsystems.

From a multi-agent planning perspective, the problem of coordinating a team of

collaborative agents has typically been treated in one of three ways. One approach is

to pre-enumerate a set of local roles and protocols to govern the interaction between

agents in the accomplishment of a given task (e.g., [30]). A second has been by to

define extensions to single-agent planning frameworks that manage selection from

the set of pending goals for a given agent (e.g., [1]). A third has been to focus

on the development of solutions to more specialized planning problems, e.g., the

recent flurry of activity on the Multi-Agent Path Finding (MAPF) problem (e.g.,

[16, 25, 29]). In the context of deep space habitats, none of these approaches are
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1. Introduction

satisfactory on their own. Specification of agent roles and interaction protocols

can be an appropriate tactic for accomplishing joint tasks. Still, it is difficult for

such decentralized approaches to assure safe and collision-free physical actions of

robotic systems in constrained spaces or to satisfy temporal constraints involving

multiple independent actors (e.g., no robotic movement during a spacecraft maneuver)

without introducing other mechanisms. Alternatively, goal management extensions

to single-agent planning frameworks, as well as to decentralized multi-agent planning

approaches [31], tend to be self-interested and are also not equipped to handle shared

global constraints (e.g., access of a given robot to a particular segment of a rail

network at a given point in time) or limitations in the availability of requisite robotic

systems over specific temporal windows in any principled way. Specialized multi-agent

solutions such as MAPF can be helpful in particular circumstances but do not offer

an overall answer to the problem of interest. We view goal selection and management

across multiple robotic and autonomous systems as more of a scheduling and resource

allocation problem than a planning problem. Specialized solutions such as MAPF

can provide additional leverage by adopting this perspective.

In the area of autonomous space mission planning, EO-1 [23] demonstrated an

impressive ability to dynamically re-plan its observation schedule based on image

processing results obtained from previous observations in a closed-loop fashion.

However, the requirements of deep space habitat operations control offer more

significant challenges. Whereas coordination of onboard image processing constitutes

a relatively predictable sequence of computational tasks, management of robotic

system tasks is fraught with uncertainty in how long tasks will take, whether or not

they will achieve the desired result, and how to recover if the desired result is not

achieved. An effective approach to autonomous control in deep space environments

must be capable of anticipating uncertainty and giving greater flexibility to execution

processes. Alternatively, another NASA success has been the MAPGEN science

planner for the Spirit and Opportunity Mars rovers [6], which was built on the earlier

timeline-based planning technology of the NASA Remote Agent mission [19] that does

anticipate and plan to accommodate some amount of temporal uncertainty. However,

MAPGEN was designed principally to provide an interactive constraint-checking

capability for science planners operating on the ground (planning the next day’s

science activities). Like other timeline-based planners, its underlying planning engine
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1. Introduction

relies on the low level, state-variable specific heuristics for search control and does

not exploit the power and structure of a global scheduling and resource allocation

perspective. We aim to develop a timeline-based planning framework that integrates

the power of EO-1’s hierarchical, scheduling perspective on search control with the

complementary strength of MAPGEN to produce and maintain plans with temporal

flexibility.

1.2 Contributions

We present T-HTN, a novel HTN-based timeline planner/scheduler that enables global

coordination of multiple robotic and autonomous systems (as well as human agents) in

carrying out inspection, maintenance, and repair tasks on board a deep space habitat.

We designed T-HTN to effectively account for complex temporal and spatial constraints

on task execution and extract significant inter-agent coordination constraints while

providing individual agents with the flexibility to cope with some amount of execution-

time uncertainty locally. Further, we conducted initial testing in multi-robot scenarios

involving two UR5 robot arms mounted on a common rail to evaluate effectiveness in

managing resources that must be shared across multiple agents.

we present the following core contributions:

• A hybrid planner/scheduler T-HTN that combines the structural power of an

HTN representation with the expressivity and flexibility of timeline-based

planning frameworks from a goal regression and resource allocation perspective.

• A comprehensive plan search procedure that provides ease of integration for

specialized planners for optimized plan generation via specialized functional

constructs.

• A modular and easy-to-use system that generates plans in a standard output

specification, which connects to existing motion planners and yields comprehen-

sive information that aids in building a reactive system.

3



1. Introduction

1.3 Organization

Chapter 2 reviews some required preliminaries and essential concepts in symbolic and

temporal planning. Chapter 3 reviews some of the current work in this domain and

examines areas where they are deficient. Chapter 4 introduces T-HTN that forms the

primary and core contribution of this thesis. This chapter details each component

of the framework and explains the novel contributions made at each step. Further,

chapter 5 presents the empirical results where we demonstrate the effectiveness of

T-HTN on specific multi-robot scenarios. Finally, Chapter 6 concludes this thesis

and provides the limitations of T-HTN, which forms the basis of future directions of

research.
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Chapter 2

Background

2.1 Classical Planning

A classical planning problem aims at synthesizing a sequence of actions that, when

executed, transforms the initial state of the world to a prescribed goal state. This

process requires a characterization of the initial state of the world along with the goal

state and a comprehensive list of all possible actions. A simple classical planning

problem deals with a finite state scope where each action is deterministic. Further, each

action is considered instantaneous with a simplifying assumption that the underlying

world state is static and fully observable. Additionally, it does not incorporate any

rich model of time, making it less robust to execution-time uncertainty particularly

in cases when there are strict deadlines imposed on the goals. This makes classical

planning more of a search problem over a set of states that are often represented in

a common language such as Planning Domain Description Language (PDDL) [12].

PDDL is a family of languages that allows one to define a planning problem. A

planning problem specification consists of a domain file that encapsulates all the

action enumerations and parameter definitions and a problem file that specifies the

initial and the prescribed goal states. There have been multiple evolutions of PDDL

over the years. The initial versions were limited to predicate logic modeling problems,

whereas the more recent versions support time and numerics, making the language

more expressive. Some extensions include support for durative actions that are

just regular actions which have corresponding durations assigned to them. Efficient
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2. Background

algorithms exist that build planning graphs and use heuristics to help guide the search

procedure (e.g., [5]) for faster plan synthesis.

2.2 Hierarchical Task Networks

Figure 2.1: HTN representation of traveling from Pittsburgh to Washington DC. The
node in green represents the task that should be accomplished. Nodes in red are
high-level methods that can be further decomposed. Nodes in blue are the primitive
tasks that correspond to concrete actions.

A common drawback of the simple classical planning approach is that it has a

hard time leveraging the domain structure of a given problem. For most practical

purposes, it is found that humans have a general idea of how to solve a particular

problem based on their experiences. They understand that the given task can be

broken down into smaller subtasks until they are nondecomposable at which point

they must have corresponding robotic behaviors defined for them. Such primitive

tasks are the schedulable units on the timelines. Hierarchical Task Networks (HTN)

were designed to enable planning systems to use such structure. Within the HTN

planning paradigm, the problem transforms into accomplishing a set of tasks rather

than a pre-specified goal. The framework builds on top of methods that allows

for the recursive decomposition of a high-level task or nonprimitives into smaller

subtasks, terminating with primitive tasks referred to as actions. Such decomposition
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2. Background

is generally utilized to identify all the solution options based on their preconditions

and effects, thereby building a task network over which a planning search procedure

uses guided heuristics similar to the classical planning approach to synthesize a

composed plan comprising primitive tasks. One can find a detailed overview of HTN

planning in [13].

Example

Suppose that a person wants to travel from Pittsburgh to Washington DC. There are

multiple ways that they can achieve this task. They can either travel via Amtrak or

take a flight or drive to the destination. This simple task can be represented by an

HTN as shown in Figure 2.1.

2.3 Simple Temporal Networks

Simple Temporal Networks (STN) are often used when tackling planning and schedul-

ing problems that involve temporal constraints. It is able to model a temporal plan

in which it is possible to constrain the distance between pairs of time points whose

occurrence is under the control of the executing agent (i.e., a real-time planner).

STNs were first proposed by [11] in their seminal 1991 paper. A network of temporal

constraints is defined by a set X = {x1, x2, . . . , xn} of continuous temporal variables

or time points along with a set C = {c12, . . . , cij} of binary temporal constraints. A

time point represents an event occurring at some point in time, often, a pair of them

together representing the start and end of some task. Each temporal constraint limits

the temporal distance between exactly two time points. In an STN, such temporal

constraints cij ∈ C are represented in the form of an interval [lb, ub] ∈ R which

essentially restricts the time that may elapse between the time points xi and xj by

requiring that xj−xi ∈ cij . Such intervals may extend to (negative) infinity, implying

that one or both of the bounds are unconstrained. To build the distance graph of

the constraint network one uses the set X as nodes and represents the set C as edge

weights between two nodes. The lb bound is often represented by an directed edge

with weight wij = −lb going from xj to xi while the ub bound is represented by

another directed edge with weight wij = ub going from xi to xj.

7



2. Background

Further, one can always assume that an STN is fully connected. Such an assump-

tion can be made without loss of generality as even if it is not valid, each connected

component then acts as an individual STN. With this setup, one also needs to refer

to the absolute time instead of just the temporal distance between two time points.

To solve this, one can identify a temporal reference point that is often represented as

calendar zero (CZ), which can be interpreted as the origin of time and is explicitly

constrained to occur before any other time point. With this basic setup in place, a

valid schedule for an STN is defined as an assignment of values from R to each time

point in X such that all the constraints in C are satisfied. Additionally, an STN is

called consistent if it admits at least one valid schedule.

Robotic Master’s Degree

Course Work Thesis Defense

CZ c1 c2 t1 t2 h

T
a
s
k
N
e
t
w
o
r
k

S
T
N

[0,∞) [12, 16]

[0,∞)

[0,∞)

[16, 24] [0,∞)

[0, 24]

Figure 2.2: Example STN S: getting Robotics master’s degree at CMU. The red
node corresponds to the high-level task of completing the Robotics master’s at CMU
which is decomposed into two primitive actions represented with green nodes. Each
primitive action is associated with a pair of time points which correspond to their
start and end times. The blue nodes represent the temporal reference point CZ and
the horizon time h.
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Example

Let’s say we want to schedule the tasks required to complete a Robotics master’s at

CMU. The requirements of the degree are to complete the coursework and to defend

a research thesis. These activities can be represented by their corresponding start

and end time points: c1 and c2 for the course work which requires 12 to 16 months,

and t1 and t2 for the thesis defense which requires 16 to 24 months. Let’s say one

starts their journey at a universal reference point CZ and has a long horizon time

point referenced by h. We want to guarantee that the degree is conferred before 24

month period expires. Based on this example problem, the corresponding STN S is

showcased in Figure 2.2.

2.4 Timeline-Based planning

All the approaches that we discussed till now have been action-based. Their fun-

damental concepts include state representation and action enumerations. These

actions are executed to affect the state of the world, and a sequence of such actions is

performed based on a plan to reach a satisfying goal state. Timeline-based planning

is an entirely different approach and was first introduced in the context of planning,

and scheduling for space-based operations [3, 17, 18, 26] and more recently in the

context of human-robot collaboration [32]. The core motivation behind adopting this

approach is the rich temporal reasoning that the framework provides. There is no

clear separation between states and actions, and the planning problem is generally

modeled as systems composed of multiple components. Each such component is called

a state variable whose evolution over time is described by a timeline. This evolution

is governed by a set of temporal constraints called the synchronization rules. Each

state variable has an associated transition function that describes the states that

this component can be over time. This framework allows one to model and reason

about systems made of multiple components rather than the behavior of a single

agent. Timeline-based planning has typically been done using fixed-time schedules,

i.e., without STNs; however, few existing frameworks leverage STNs in conjunction

with timelines. Each timeline is essentially just a sequence of tokens where a token

describes one particular state of the state variable. Given a set of state variables V

9



2. Background

and a set of rules R over those state variables, the timeline-based planning problem

involves finding a set of timelines T for all v ∈ V such that no rule r ∈ R is violated.

Using STNs as a backbone, the timeline-based planning framework naturally exploits

its advantages and produces temporally flexible plans by default.

10



Chapter 3

Related Work

Recent work by [32] showcased a timeline-based planning framework called PLAT-

INUm that provided a new algorithm for temporal planning with uncertainty by

adding controllability tags. They introduced some heuristic search capabilities that

were grounded in hierarchical modeling. In addition to this, they also presented a

robust plan execution module that completed the feedback loop for the planner to deal

with temporal uncertainty. This work was modeled with human-robot collaboration

in mind, where they modeled humans as uncontrollable agents and leveraged the

flexible temporal nature of timelines. They proposed a three-pronged hierarchical

approach where the first step involves supervision which models the process and

high-level tasks that need to be accomplished. The second step includes coordination,

which models the decomposition of high-level tasks into low-level tasks. The final

step concludes with an implementation pipeline that models operations that allows

a robot to complete a particular task. They perform these steps first to identify a

partial plan, after which a solver refines that established plan until a complete and

valid plan is found. The refinement process involves detecting flaws that violate the

validity of the plan and performing corrective steps to fix those flaws. Further, the

developed planner utilizes the controllability tags at the time of execution monitoring

to establish the validity of the states of the controllable actors in the environment.

Although the proposed methodology is robust to temporal uncertainty, their planner

has difficulty working out the resource dependencies within the environment as that

aspect is not explicitly modeled. Moreover, their flaw-resolving strategy can poten-
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tially lead to an infinite loop due to cyclic dependencies. Additionally, their reliance

on Domain Description Language (DDL) further limits their widespread adoption in

the planning community as domains written in this language lack the action-based

planning perspective that PDDL provides. DDL was developed to emphasize the

timeline-based planning perspective of an evolving system of components over time

but does not explicitly support plan operators that PDDL supplies.

To address the lack of resource reasoning in PLATINUm, another work [33]

presented a more theoretical formalization for adding explicit resource reasoning

to a timeline-based planning framework. They proposed the addition of resource

profiles to the original framework and redefined the validity of a feasible plan as

the one that satisfies not only all the synchronization rules but also all the resource

specifications. So once a plan is generated, their plan validator checks the modified

resources within the plan. It ensures that these resource profiles were following the

initial specifications mentioned in the domain. If they find potential violations, they

extend the prior flaw-resolving strategies to account for such violations. A proposed

method includes solving a Minimal Critical Set detection problem, where resource

expressions that violate the capacity constraints of a resource are represented as

Critical Sets. Although the proposed formalization is comprehensive, the underlying

framework still inherits the same drawbacks as PLATINUm.

On the other hand, some other recent work [22] has looked at extending Simple

Hierarchical Ordered Planner 2 (SHOP2) [15, 20, 21] which is a well known HTN

planner to handle multi-capacity discrete resources along with complex temporal

constraints. This work proposed integrating three carefully designed and inter-

related submodules, including a resource model followed by a Check Consistency

and Backtracking (CCB) module, which then feeds into a Guided Search module

that tries to improve the resource utilization and minimizes the generated plan’s

makespan. Although this work does attempt to combine the efficiency of resource

utilization and flexibility of STNs, they don’t retroactively try to satisfy failing

preconditions when looking for possible primitive actions in response to a prescribed

goal. Further, they suffer partially in terms of optimality since they do not rely

on existing specialized planners to generate plans for solved problems. The idea

of combining HTNs with STNs is not new since some past work [34] has tried to

leverage the causal relationships encoded within HTNs to reduce the time complexity
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of temporal propagation on the associated STN. One such proposed method includes

a sibling-restricted propagation algorithm that exploits the HTN structure to limit

the temporal constraints between only a parent and their children.

In complete contrast, some other recent work working in the action-based planning

frameworks [2, 8] proposed the idea of Affordance Templates to combine the high-level

task planning and behavior-based techniques. Affordance templates are essentially

graphical representations in 3D worlds, such as RViz, that provide robot task goals

and parameters in an object-centric coordinate frame. In addition, they added

capabilities to prioritize and cluster goals so that the planner can adjust generated

plans based on the incoming goals’ priority levels. For example, they proposed a Goal

Management module within ROSPlan [7] that modifies the set of current input goals

to the ROSPlan pipeline following a simple protocol where the Goal Manager keeps

on removing low priority goals from the pool one by one until the ROSPlan pipeline

can successfully satisfy all the remaining goals. Further, they extended the ROSPlan

architecture to support plan viability where they keep monitoring the state of the

world as actions are executed to ensure that if they find any inconsistencies, then

at that point, they can spawn a replanning request to fix it. Although the proposed

end-to-end framework is shown to be robust in terms of execution, however, they

fail to address the temporal uncertainty introduced into the system by, for example,

the motion planning primitives. Suppose a plan required a robot to do a particular

task, but while executing the said task, the robot failed to complete it due to motion

planner failure. In that case, the plan viability check fails as it does not match the

expected world state, thereby triggering a very compute-intensive replanning request.

If the system had some amount of temporal flexibility incorporated by maintaining

all four time bounds on the task start and completion rather than having a fixed-time

plan which just maintains a start and an end, there would have been no need for

another replanning request.

Finally, there has been work within the scheduling community that has coupled

the use of hierarchical task templates with constraint-based procedures for allocating

resources to requested tasks over time. One early example was the AMC Allocator

[28], a system for generating airlift and tanker mission schedules world-wide for

the USAF Air Mobility Command (AMC). To achieve scalability, an incremental-

constraint-based search procedure was used, which together with air mission template
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descriptions, enabled efficient generation of good initial solutions. Then as additional

decision-making time permitted, an extended iterative repair search was executed

to further improve this solution. More recent research [24] has generalized this

constraint-based search paradigm to operate with an STN-based, flexible times

solution model, and demonstrated its effectiveness and scalability in solving dynamic,

dial-a-ride pickup and delivery problems. Combining the findings of such work with

an HTN-based perspective allows one to leverage the inherent causal relations that

the structural representation of HTN provides and generate optimal and efficient

plans that can be incrementally extended to include newly received requests.

14



Chapter 4

Methodology

Very little prior work exists that tries to combine the action-based and timeline-based

planning paradigms, while both approaches have their advantages. The main goal

of this thesis is to leverage them to develop a hybrid planning approach that can

reason for tasks assignments for overall coordination and management of activities

on board a space habitat while being scalable towards multiple agents and robust to

temporal uncertainty. To realize this, we developed a multi-agent planning/scheduling

framework - T-HTN, which starts with a two-layer representational structure that

is typical of timeline-based planners: (1) A domain-level representation of tokens

designating particular values that different state variables can take over time, along

with constraints that define the legal transitions that can occur between values

for each state variable, and (2) an underlying graph of time points and distances

that constitutes a Simple Temporal Network (STN), which is used to compute the

start and end time bounds on timeline tokens and to enforce consistency as they

are inserted into the state variable timelines to achieve specific goal states. Using

this domain-level representation, our designed search procedure for generating an

executable plan in response to a given task request proceeds as an interleaved process

of instantiating a task network and then searching for slots on timelines where the

instantiated tasks can be feasibly inserted. These timelines are only associated

with required resources and must be allocated to perform tasks defined by the

generated task network. When we find feasible set of slots for all the necessary

tasks, our developed framework goes through them in an ordered fashion to execute
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Figure 4.1: Consider two UR5 robotic arm manipulators which are mounted on a
shared railway network. Let’s indicate the robot on the left as UR5A and the one on
the right as UR5B. Within this scenario, an incoming request mandates the movement
of the red cube from its initial location to the near edge of the table. The rail network
here is a simple rail segment that is internally represented as five different adjacent
rail blocks.

each action primitive on the corresponding robot utilizing that robot’s internal

motion planners. In the guided effort to support easy adoption in the planning

community, we built T-HTN to be flexible enough to translate the generated plans into

the standard PDDL for communication to individual robotic agents, with the interface

to support specialized planners for optimal plan generation while also encompassing

comprehensive information to aid in building a reactive system. Having presented a

high-level overview of the approach, we will use a simple running example as shown

in Figure 4.1 involving two UR5 robotic arms mounted on a shared railway network

to explain each segment of the framework in detail.

4.1 Hierarchical Task Modeling

Current PDDL plan representations are designed principally for planners that reason

from first principles, i.e., planners that reason either backward from the goal state to

the initial state or forward from the initial state to the goal state by applying plan
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operators to achieve outstanding preconditions or effects. One exception is a recent

work of [14], which has looked at the problem from an HTN perspective and hence

proposed a hierarchical task planning extension to PDDL called Hierarchical Domain

Definition Language (HDDL). However, like most contemporary HTN planning

frameworks (e.g., [21]), plans tend to be expanded forward in time and do not support

durative actions and, more generally, reasoning over timelines from a “God’s eye”

point of view of the future. Another recently developed planning framework [4] has

similarly recognized the need and potential of such reasoning capabilities but utilizes

its non-PDDL representation. Given our interest in being able to translate generated

plans into standard PDDL for communication to individual robotic agents and using

[14] and [4] as starting points, we developed a hierarchical extension to PDDL 2.1

that supports timeline-based reasoning.

(:action move_to_home_state
:parameters (?r - robot)
:precondition (and

(unsafe state ?r.st)
)
:effect (and

(= ?r.st home)
)

)

(a)

(:action move_to_home_state
:parameters (?r - robot)
:duration (= ?duration 10)

:precondition (and
(at start (unsafe state ?r.st))

)
:effect (and

(at end (= ?r.st home))
)

)

(b)

Figure 4.2: Domain representation of a primitive action move to home state without
(left) and with (right) durative action and temporal qualifiers support

1. Specifically, we expanded the Extended BNF of HDDL to support durative

actions similar to what PDDL 2.1 supports. Durative actions, however, are only

supported at the level of primitive actions. In contrast, temporal bounds for

high-level tasks can be estimated via the individual durations of their ultimately

decomposed constituent actions and their partial/total ordering. These tasks

can be decomposed into different subtasks via different method specifications.

With this support, one can specify each action’s duration constraint, which

helps guide the search process later to maintain temporal consistency. Figure

4.2 shows a comparison as to how the domain representation changes with this
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support. Further, support for temporal qualifiers such as at start, at end

and over all was also added, where each such qualifier enforces the temporal

bounds when a literal takes effect.

(:types
state - object
location - object
rail_block - discrete_reusable_resource
item {?loc - location} - discrete_reusable_resource
map {?vertices - [rail_block] ?edges - [[rail_block]]} - object
request {?release_time - object ?due_date - object

?demand - object} - object
robot {?block - rail_block ?st - state

?grasp - item} - discrete_reusable_resource
)

(a) Domain representation of typed objects.

(:object-instances
box {loc = box_pick_loc}
ur5A {block = blockA, st = home, grasp = empty}
ur5B {block = blockD, st = home, grasp = empty}
network {vertices = [blockA blockB blockC blockD blockE],

edges = [(blockA blockB) (blockB blockA) (blockB blockC)
(blockC blockB) (blockC blockD) (blockD blockC)
(blockD blockE) (blockE blockD)]}

requestA {release_time = 0, due_date = 300,
demand = [move_item box box_drop_loc]}

)

(b) Domain representation of typed objects instantiations.

Figure 4.3: Domain representation of typed objects where state, location and
rail block is a normal typed object whereas robot etc. are complex typed objects
which support individual attributes.

2. In addition, we also added support for complex data types. We took some

inspiration from the Action Notation Modeling Language (ANML) [27] spec-

ification, which supports resources and complex objects as well. With this

support, one can define the attributes of each typed object in the domain

representation, which helps in providing a more accessible and modular way

to express the spatial constraints of that typed object. A planner can further

utilize such constraints to make informed decisions regarding the object’s state,
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mainly if that object is of a resource type. Since timelines are only associated

with resource types, their corresponding attributes are also maintained on the

same timeline. This approach is slightly tangential to the perspective taken by

traditional timeline-based planning frameworks since they tend to keep separate

timelines for each state variable. The proposed approach provides an efficient

way to maintain resource states on a single timeline with an implicit trade-off

for computing the required states.

Additionally, to support the assignment of the attributes of these complex

objects, we also added an assignment operator to the domain specification. When

this assignment operator is used in conjunction with precondition predicates,

it acts as an equality check. Still, when utilized in conjunction with effect

predicates, then it serves as the regular assignment operator. Figure 4.3 shows

an example of a complex data type and its corresponding instantiation in the

domain representation. Further, we added support for request type objects,

which provides release time, due date, and demand attributes to aid in providing

a streamlined way to specify system goals to a planner. The release time and

due date attributes enforce a global constraint on the goal specification. On the

other hand, the demand attribute currently only supports task specification,

which is internally tied to method specifications.

As shown in Figure 4.3 we also added initial support for discrete, reusable

resources. These types of resources are consumed at the beginning of action but

are given back at the end of the said action. For this initial implementation,

we modeled these resources to be unit-capacity resources, but they could be

multi-capacity as well.

3. One challenge within the planning process for multi-agent systems is the embed-

ded combinatorics of enforcing global resource constraints, such as access to a

shared rail in the problem shown in Figure 4.1. Consider a larger scenario where

several robots are mounted on a common rail network with multiple paths, or

equivalently where any set of heterogeneous robotic systems (walkers, freeflyers,

etc.) are operating in a common confined space. As any given robotic agent

attempts a movement in pursuit of carrying out its currently assigned task,

there may be collaborative moves that several other robots must take to open
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(:f-predicates
(clear ?from ?to - rail_block)

)

(a) Domain representation of functional
predicates.

(:f-method m_clear_and_move
:parameters (?r - robot ?to - rail block)
:task (clear_and_move ?r ?to)
:precondition (and

(at start (not (clear ?r.block ?to)))
)
:effect (and

(at end (clear ?r.block ?to))
)

)

Actions

E
xt

ern
al Planner

W
rapper Function

I
n
p
u
t

(b) Domain representation of functional methods.

Figure 4.4: Domain representation of functional predicates and methods. Using the
working example as described in Figure 4.1 clear predicate returns true when the
path between from and to parameters is empty while the clear and move method
defines the task network for clearing and moving a blocking robot out of the way of
the calling robot.
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up a path and enable this movement. As the number of alternative paths that

might be considered as options increases, the complexity of finding good ones via

simple backward reasoning will quickly become overwhelming. One alternative

approach is to rely on more specialized procedures for coping with enforcement

of such global constraints to overcome this challenge. For example, the path

clearing problem that was just described can be seen as an instance of the MAPF

problem mentioned before, and there are now several algorithms for solving this

problem in a globally optimal (or near-optimal) way. To accommodate use of

such specialized procedures, we added two different functional constructs: (1)

The functional predicate definitions with f-predicate and (2) The functional

methods definitions with f-method keywords. Using these constructs, one can

tie specialized external planners to the domain representation based on their

unique name identifiers, which gives an added benefit for the planning and

scheduling algorithm to focus more on allocating resources and tasks rather than

trying to satisfy some specific problem whose optimal solution can be found by

leveraging existing literature. Functional methods are slightly different in their

representation than standard methods in terms of their defined task network.

Since they are connected to a specialized external planner, we provide a simple

wrapper function whose name is restricted to be the same as the corresponding

functional method. Its purpose is to first convert the input from the parsed

format to a setup that the specialized planner’s API supports and then convert

the output of the specialized planner to a sequence of actions along with their

temporal constraints so that it can be tied to the task network. Figure 4.4

showcases an example where such constructs can be found useful.

4. Finally, we also added support for synchronization rules to the domain repre-

sentation via a new construct called sync-constraints. This construct can

be added as part of any standard method definition and currently supports two

different types of Allen relations, namely, meets and before. Task A is said to

meet another task B when task B is supposed to be executed immediately after

the execution of task A has been completed. Similarly, task A is said to be

before another task B when task B can be performed any time after task A as

long as it is within the prescribed bounds of the synchronization constraint.

Figure 4.5 provides a small example of how these relations can be used within
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(:method m_pick_item
:parameters (?r - robot ?i - item)
:task (pick_item ?r ?i)
:precondition (and

(at start (safe_state ?r.st))
(at start (not (= ?r.grasp ?i)))
(at start (reachable ?r.block ?i.loc))

)
:effect (and

(at end (= ?r.grasp ?i))
(at end (= ?i.loc grasped))

)
:ordered-subtasks (and

(task0 (grasp ?r ?i))
(task1 (move_to_home_state ?r))

)
:sync-constraints (and

(task0 meets task1)
)

)

(a) Example of meets constraint

(:method m_move_item
:parameters (?r - robot ?i - item ?drop_loc - location)
:task (move_item ?i ?drop_loc)
:precondition (and

(at start (safe_state ?r.st))
(at start (not (= ?r.grasp ?i)))

)
:effect (and

(at end (= ?i.loc ?drop_loc))
)
:ordered-subtasks (and

(task0 (pick_item ?r ?i))
(task1 (drop_item ?r ?i ?drop_loc))

)
:sync-constraints (and

(task0 before {0 +inf} task1)
)

)

(b) Example of before constraint

Figure 4.5: Domain representation of meets and before synchronization constraints.
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the domain representation.

With these modifications in place, we built a custom parser which understands

these new constructs on top of an existing parser that supports HDDL using Bison

and Flex libraries to construct internal planning data structures which aid the search

process. Based on this specification, we made certain assumptions. First, we assumed

the existence of hierarchical task models expressed at HTNs for achieving various

goals (task requests) that might be received. Hence, instead of reasoning from

the finite state machines specified for individual state variables to determine what

sequences of tokens need to be inserted on their timelines to achieve a given goal

state, as is typically done in timeline-based planning, relevant task models are instead

retrieved and used to determine the sequence(s) of tokens (i.e., primitive tasks) and

the constraints between them (i.e., causal relations, synchronization rules) that need

to be feasibly situated in time to produce an executable plan. A second departure from

typical domain modeling assumptions is taking a streamlined approach to timeline

(or state variable) definition. Specifically, timelines are only associated with required

resources and must be allocated to perform a given task (or subtask) in the task

model that is being applied. HTN task models can designate resource requirements

at different hierarchy levels, indicating the scope over which they must be allocated.

Working on the running example as shown in Figure 4.1, we modeled the domain

representation for this case using 4 different primitive actions namely,

• rail move which deals with moving a particular robot along the mounted rail

network one rail block at a time.

• move to home state which changes the state configuration of the robot such

that its collision box is minimally intrusive.

• grasp primitive models the grasping action of the robotic manipulator for any

object.

• release primitive models the ability of the robotic manipulator to drop an

already grasped object to a specified location.

In addition to the above-mentioned action primitives, we also modeled some high-

level tasks to showcase how HTNs can be leveraged within timeline-based planning

frameworks for efficient plan generation. To this effect, 3 different high-level tasks

were added, namely,
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• pick item task involves grasping a specified object followed by making sure

that the robotic manipulator changes its joint configuration to a “safe” state.

• drop item tasks models the high-level action of releasing a grasped object by

the robotic manipulator and then again going back to the “safe” state.

• move item task models the overall action of a robotic manipulator that intends

to move a specified object from one place to another.

4.2 Plan generation search procedure

Given the domain representation, we designed and developed a novel algorithm for

generating and feasibly inserting a new task plan into a global plan/schedule of

habitat activities. Central to this algorithm (different from prior timeline-based

planning frameworks) is the forward scanning procedure for scheduling instantiated

task networks on resource timelines and determining feasible intervals for executing

the task with the resources that have been assigned. This ability to take advantage

of the structure provided by pre-specified task models is key to achieving overall

planning/scheduling efficiency in multi-agent domains.

1

OR

2

3 4

5
6

7 8

Figure 4.6: Figure 2.1 represented with the variant of AND/OR tree where green
nodes are the leaves while red nodes are the internal high-level tasks and the OR
node is showcased in gray. Since traveling from Pittsburgh to Washington D.C can
be done in three separate ways, the first node introduces an OR node which further
branches into their corresponding alternative decompositions as defined by the HTN.
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move item ?item ?drop location

Resources: ?item

pick item ?robot ?item

Resources: ?robot, ?item

drop item ?robot ?item ?drop location

Resources: ?robot, ?item

grasp ?robot ?item

Resources: ?robot, ?item

move to home state ?robot

Resources: ?robot

release ?robot ?item ?drop location

Resources: ?robot, ?item

move to home state ?robot

Resources: ?robot

Figure 4.7: Generated path decomposition tree for the working example as described
in Figure 4.1

The first step towards generating a feasible plan is to process the incoming request

and map it to a known task model to create a path decomposition tree of all the

potential possible alternatives. Since the demand in an incoming request maps

to a particular high-level task, that task can be further implemented via different

methods that provide alternative decompositions of the input task. To generate the

resulting path decomposition tree, we build a variant of the AND/OR tree where

each internal node within the tree represents either an OR node for the higher-

level parent task while the leaves represent the action primitives. The OR nodes

have a special meaning where their child nodes represent all the possible alternative

decompositions of its parent node. Hence, whenever a high-level task has multiple

associated method decompositions defined in the domain model represented as an

HTN, then a corresponding OR node is introduced into the path decomposition tree

as shown in Figure 4.6. As defined, it must be noticed that an OR node can never be

a leaf of such a tree just based on the defined construction property. The creation of

this tree follows from the simple recursive expansion of the method definitions till the

action primitives are hit, at which point the growth terminates. Figure 4.7 showcases

the generated path decomposition tree for the working example where the incoming

request’s demand pertains to moving the red cube from its original location to the

near edge of the table.
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Algorithm 1 Algorithm to return all the possible instantiations of a given path
decomposition tree.

1: procedure Enumerate Decompositions(vertex)
2: Initialize empty leafs vector
3: if vertex is a leaf then
4: Add vertex to leafs

5: return leafs

6: else if vertex is OR then
7: for all children c of vertex do
8: leafs += Enumerate Decompositions(c)
9: end for

10: else
11: Initialize empty op vector
12: for all children c of vertex do
13: op += Enumerate Decompositions(c)
14: end for
15: leafs = cartesian product(op)
16: end if
17: return leafs

18: end procedure

Once the path decomposition tree is generated, the next step is to enumerate

all the possible decompositions based on which we execute the grounding process.

This process allows one to list all the decompositions by combinatorically expanding

on the existing OR nodes. Algorithm 1 provides a high-level recursive algorithm

that enables one to do so in an efficient manner while guaranteeing that none of the

possible alternatives are skipped. This algorithm follows from a simple depth-first

search procedure where at each level, we keep track of the choices that were made till

there and then recursively maintain a cartesian product of all such decisions. The

worst-case time complexity of Algorithm 1 is dominated by the size of the cartesian

product, which is being computed in Line 15.

After this, for each possible alternative decomposition, we instantiate a task

network, tied with an underlying STN, and composed of the tokens that correspond

to the high-level tasks or action primitives. Each token constitutes a start and end

time point for a particular task. It consists of information regarding the potential

parameter assignments as well. If the token corresponds to an action primitive,
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Algorithm 2 Algorithm to return an instantiated task network connected to an
underlying STN that enforces the pre-specified temporal constraints.

1: procedure Expand(vertex, tree, STN)
2: Create a token for vertex
3: Connect token to tree

4: if vertex is not leaf then
5: for all children c of vertex do
6: Expand(c, tree)
7: end for
8: Add synchronization constraints to the STN

9: Add contains constraints to the STN

10: end if
11: return tree

12: end procedure
13: procedure Instantiate Task Network(search tree, STN)
14: Instantiate an empty tree

15: tree ← Expand(search tree.root, tree, STN)
16: Add the release time constraint to the search tree.root

17: Add the due date constraint to the search tree.root

18: return tree

19: end procedure

a corresponding duration constraint is enforced between the start and end time

points. This task network forms the fundamental structure with which our developed

framework, T-HTN first grounds the unassigned variables and then utilizes it to search

for “slots” on the required resource timelines where the instantiated tokens can

then be feasibly inserted. As described previously, timelines are composed of tokens

and a sequencing constraint between a pair of tokens on the same timeline are

enforced to maintain their ordering within the underlying STN. This construction

of the task network follows a similar depth-first search procedure where each node

represents a token. A token expansion involves creating corresponding child tokens

and establishing the pre-specified temporal constraints. Additionally, all the child

tokens inherit the precondition and effect literals of their parent tokens. The temporal

constraints include the synchronization rules such as meets and before constraints

that have been introduced earlier.

Further, we enforce a contains temporal constraint between each of the high-
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Figure 4.8: Instantiated task network for the working example as described in Figure
4.1. Nodes in red represent the high-level tasks, and the nodes in green represent
the action primitives. The blue edges correspond to the release time and due date
constraints, while the red edges correspond to the contains constraint. The black
edges correspond to the pre-specified synchronization rules.
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level tokens, and their corresponding decompositions so that the two levels are tied

together. Such constraints ensure that the rules imposed on the aggregate tasks are

also executed on the constituent tasks, propagating constraints further down the

network. If the constituent tasks of an aggregate task are known to be ordered, then

we only need to enforce the contains constraint between the start time point of the

parent task to the start time point of the first task in ordered decomposition and the

end time point of the last child in the ordered decomposition to the end time point

of the parent task. Once all the tokens have been generated, the whole network is

connected to the calendar zero temporal reference point based on the release time

and due date constraints specified by the incoming request. To efficiently compute

all the resource and parameter assignments, we segregate them based on whether

they have been already assigned or not. The ones that were assigned move to a

closed set while the rest move to the open set. A cartesian product is then computed

on all the possible assignments of the open set parameters and is used to ground

the generated task network. Algorithm 2 provides a high-level overview of how task

network generation proceeds. Assuming that there can be V nodes in the generated

tree, the worst-case time complexity of the algorithm is O(V ) since each vertex needs

to be visited at least once so that it can be part of the task network. Figure 4.8

shows the generated task network for the working example as described in Figure 4.1.

Once the instantiated task network is built, it acts as a template for all the

possible resource and parameter assignments. For each possible combination of

resource assignments, T-HTN determines a set of feasible slots by a forward timeline

scanning process that repeatedly attempts to forward schedule the leaf tasks in the

instantiated task network at each possible start point. The timeline scanning process

iterates through all the required resource timelines in order. It identifies slots on

those timelines characterized by the previous and next tokens that are already placed

on the timeline. The search of slots is pivoted around the resource of type robot

while considering all the other resources as dependent resources. The leaf tasks of

the instantiated task network are only deemed to be added on the robot timelines.

In contrast, their corresponding tokens for the other required resources are added

on the dependent resource timelines. For each combination of slots identified on

the robot and dependent resource timelines, we query the underlying STN to check

whether the previous token’s earliest finish time is smaller than the leaf task’s earliest
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start time and the leaf task’s earliest finish time is smaller than the next task’s earliest

start time. In addition, it is also checked whether the leaf task’s duration constraint

can fit in a slot based on the next token’s latest start time and the previous token’s

earliest finish time. This process helps prune many infeasible combinations of slots

early on, thereby speeding up the process significantly. Following these checks, we

construct a coherent world state of the environment by iteratively modifying the

initial world state with the effect literals encapsulated by the currently considered

slots. This updated world state is utilized to check the preconditions of the leaf task,

and assuming that all the precondition literals pass, the algorithm goes ahead and

enforces the temporal constraints imposed by the leaf task’s token on the underlying

STN. These temporal constraints include first removing a sequencing constraint

between the previous token’s end time point and the next token’s start time point,

followed by adding two new sequencing constraints between the previous token’s end

time point with leaf task token’s start time point and leaf task token’s end time point

with next token’s start time point. Once all the leaf tasks of the instantiated task

network have been scheduled, T-HTN logs the slots’ information and continues the

same procedure for other possible resource and parameter assignments. Finally, once

all options have been generated, they are evaluated according to some set of objective

criteria (e.g., minimize overall task makespan, complete task as early as possible,

reduce disruption to plans of other robots), and T-HTN commits to the best option.

Note that sometimes it is hard to encapsulate the entire precondition check within

single or multiple literals. By utilizing the functional predicate constructs introduced

earlier, we use specialized algorithms to compute such prerequisite checks efficiently

and optimally. Hence in the process of checking preconditions against an updated

world state, if any precondition literal fails either via a functional predicate call or via

a violation of a constant literal, we attempt to satisfy such failing preconditions in

two different ways. First, we iterate through the list of action primitives and identify

potential actions whose effect literals match the failing precondition literal. If we finds

such an alternative, the newly instantiated tokens are then added to the same task

network, and the procedure continues normally. Second, we iterate through the list

of functional methods and identify potential solutions whose effect literals match the

failing precondition literal. If we find such a method, we call the specialized planner

associated with that functional method. We update the task network by adding all

30



4. Methodology

Algorithm 3 Algorithm to find a set of feasible slots for a given instantiated task
network while attempting to satisfy any failing precondition literals.

1: procedure Satisfy Precondition(literal, task network, STN)
2: Find the satisfying task tk

3: Identify tk’s required resources and parameter assignments
4: if tk is an action primitive then
5: Create token corresponding to tk

6: Add token to task network

7: Add temporal constraints of token to STN

8: else
9: Call the specialized external planner which returns a set of tokens
10: for all token in tokens do
11: Add token to task network

12: Add temporal constraints of token to STN

13: end for
14: end if
15: end procedure
16: procedure Find Slots(task network, STN)
17: Instantiate an empty slots data structure
18: for all Leaf tasks tk in task network.leafs do
19: Collect tk’s required resource R assignments
20: for all Slots s over R do
21: Check temporal bounds of s using STN

22: Compute the world state ws using s

23: for all Precondition literal p over tk do
24: if p fails against ws then
25: Satisfy Precondition(p, task network, STN)
26: end if
27: end for
28: Enforce temporal constraints of tk onto the STN

29: slots += s

30: end for
31: end for
32: return slots

33: end procedure
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the newly generated tokens, after which the procedure continues normally. Whenever

T-HTN finds an alternative action primitive or method, it validates that alternative

by comparing it’s set of precondition literals with the updated world state. If there is

any violation, T-HTN continues to look for other alternatives until they are exhausted.

Since this process can potentially lead to infinite cycles, we employ a conservative

approach where the operation of satisfying preconditions is terminated after the first

recursive level. Algorithm 3 provides a high-level overview of the outlined search

procedure. Assuming that there are T leaf tasks to be scheduled and at most N

potential slots for each such task, then the worst-case complexity of the algorithm is

O(TN) which is going to be heavily dominated by the size of slots since as each leaf

gets scheduled N � T .

To summarize, our developed framework, T-HTN combines Algorithms 1, 2 and 3

to satisfy any incoming request given a set of timelines tied to an underlying STN. It

first parses the incoming request and generates a corresponding path decomposition

tree which gets processed by Algorithm 1 to generate all the possible alternative

decompositions. Each decomposition is then passed to Algorithm 2 to form a

corresponding task network that enforces all the relevant temporal constraints on the

underlying STN. The generated task network is then passed to Algorithm 3 which

finds a set of feasible slots on the required resource timelines while attempting to

satisfy any failing precondition literals. Since Algorithms 2 and 3 are repeated for all

possible decompositions, the overall complexity of T-HTN also depends on the total

number of such possible decompositions as defined by the input HTN. Assuming that

there are at most D such decompositions, the worst-case complexity of our approach

is O(DTN) which is heavily dominated by Algorithm 3.

Looking back at the working example, assuming the robot parameter assignment

in the corresponding task network shown in Figure 4.8 was UR5A, it is clear to

observe that UR5B must move out of the way for the actions to take place successfully.

This means that when our framework tries to schedule the instantiated task network

with UR5A as the robot parameter assignment, it triggers a satisfying precondition

procedure which calls m clear and move functional method. This method is internally

tied to a specialized external planner that computes the path for the offending robot

to move out of the way of a given path for the calling robot. Moreover, to pick the

box, UR5A is first expected to be close to the object before attempting the grasp.
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Figure 4.9: Updated instantiated task network for the working example as described
in Figure 4.1. Nodes in red represent the high-level tasks, and the nodes in green
represent the action primitives. The nodes in magenta were added to the original
task network by a specialized planner who was triggered by T-HTN to satisfy a failing
precondition. The blue edges correspond to the release time and due date constraints,
while the red edges correspond to the contains constraint. The black edges correspond
to the pre-specified synchronization rules.
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Figure 4.10: Final snapshot of the timelines generated by T-HTN in response to
scheduling the working example outlined in Figure 4.1. The red node encapsulates the
task network, which was shown in Figure 4.9 and the blue arrows signify the release
time and due date constraints. The pink arrows relate to the 〈0,∞〉 sequencing
constraint. In contrast, the brown arrows mark the 〈0, 0〉 contains constraint that
joins the tokens on the robot and corresponding dependent timelines. The head
and tail tokens on all the timelines act as auxiliary tokens, which do not have any
significance apart from helping in a coherent token insertion procedure.

This prerequisite condition fails, triggering another reachable functional method

that is also tied to another specialized external planner that computes the path of

the calling robot to the required destination. This results in the generation of an

updated task network, which is shown in Figure 4.9.

Finally, the overall plan/schedule of activities is generated, extended, and managed

incrementally over time as new pending requests and unexpected execution results

that require re-planning are received. New tasks are allocated to specific resources and

added to the overall plan as new requests are received. In some cases, the remaining

temporal flexibility in the current plan/schedule (or equivalently the continuing

availability of the resources that need to be allocated to accomplish the task) will

seamlessly accommodate additional requests. In other, more resource-constrained
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situations, the addition of new tasks may cause the removal or delay of some less

important, previously scheduled tasks. In re-planning settings, it may also be the

case that some previously planned/scheduled tasks may no longer be relevant and

can be retracted to create resource availability for performing corrective tasks. This

inherently incremental search approach to overall planning and scheduling of habitat

activities provides both the temporal flexibility to allow individual robotic systems to

locally respond to execution anomalies if possible, while also providing the ability

to rapidly re-plan from a more global perspective with attention to minimizing the

level of disruption to initially planned activities. Figure 4.10 showcases the final

snapshot of the timelines generated by our developed framework, T-HTN as a result of

scheduling the use-case scenario outlined in the working example.
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Chapter 5

Demonstrations

In this chapter, we will take a closer look at how we execute the working example as

described in Figure 4.1 within a simulation environment. Further, we will present

the output specification for that particular use-case scenario that is fed to a simple

execution engine that can carry out the generated plan by scanning the timelines.

Although the working example only deals with a single incoming request, to establish

the efficiency and correct implementation of the developed framework, we also present

a multi-request variant of the same working example. For these experiments, T-HTN

utilizes an objective metric to prioritize plans that complete a given request as early

as possible. The entire framework, including the domain representation parser and

the developed planner, was built in C++ for efficient code execution. Moreover, to

showcase the superiority of our developed framework, we compare its performance

with another temporal planner called POPF [10] that belongs to the action-based

planning paradigm. POPF is a forwards-chaining temporal planner built on the

foundations of grounded forward search in combination with linear programming to

handle continuous linear numeric change. With default specifications, POPF tries to

generate plans that are optimized with respect to its overall makespan.

5.1 One request case

Going back to the working example as described in Figure 4.1, once T-HTN schedules

the corresponding task network as shown in Figure 4.9, our execution engine iterates
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through the resource timelines and maintains a priority queue of tokens that are

ordered based on their earliest start times as queried by the underlying STN. Using

that priority queue, the execution engine carries out all the required tokens in order.

This process involves connecting the action primitives with the motion primitives

implemented via Moveit! Library [9] working internally on the robot in a simulated

environment. RViz was chosen to visualize robotic activities as it acts as an excellent

3D visualizer for the Robot Operating System (ROS). Figure 5.1 outlines the output

specification of T-HTN for this particular use-case scenario. This output specification

includes the resource perspective of the generated plan where tokens on each resource

timeline are presented in order. Each token is further characterized by its correspond-

ing start and end time points, which are mapped to an underlying STN. Figure A.1

in Appendix A showcases the resultant STN generated by T-HTN while planning for

this particular use-case scenario. The earliest start time and latest finish time of each

time point are also reported within this output plan specification.

Listing 5.1: The output plan specification generated by T-HTN for the working example

described in 4.1

"timelines": {
"blockA": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start58: [0.00, 60.00]",

"rail_block_ur5A_occupied_end59: [20.00, 80.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start90: [180.00, 240.00]",

"rail_block_ur5A_occupied_end91: [200.00, 260.00]"

]

}
],

"blockB": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start60: [20.00, 80.00]",

"rail_block_ur5A_occupied_end61: [40.00, 100.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start88: [160.00, 220.00]",
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"rail_block_ur5A_occupied_end89: [180.00, 240.00]"

]

}
],

"blockC": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start62: [40.00, 100.00]",

"rail_block_ur5A_occupied_end63: [60.00, 120.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start86: [140.00, 200.00]",

"rail_block_ur5A_occupied_end87: [160.00, 220.00]"

]

}
],

"blockD": [

{
"ur5B_occupied": [

"rail_block_ur5B_occupied_start70: [0.00, 100.00]",

"rail_block_ur5B_occupied_end71: [20.00, 120.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start64: [60.00, 120.00]",

"rail_block_ur5A_occupied_end65: [80.00, 140.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start84: [120.00, 180.00]",

"rail_block_ur5A_occupied_end85: [140.00, 200.00]"

]

}
],

"blockE": [

{
"ur5B_occupied": [

"rail_block_ur5B_occupied_start72: [20.00, inf]",

"rail_block_ur5B_occupied_end73: [40.00, inf]"

]

}
],

"box": [

{
"ur5A_grasped": [

"item_ur5A_grasped_start48: [80.00, 140.00]",
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"item_ur5A_grasped_end49: [110.00, 170.00]"

]

},
{

"box_drop_loc_released": [

"item_box_drop_loc_released_start74: [200.00, 260.00]",

"item_box_drop_loc_released_end75: [230.00, 290.00]"

]

}
],

"ur5A": [

{
"rail_move ur5A blockA": [

"robot_rail_move_start50: [0.00, 60.00]",

"robot_rail_move_end51: [20.00, 80.00]"

]

},
{

"rail_move ur5A blockB": [

"robot_rail_move_start52: [20.00, 80.00]",

"robot_rail_move_end53: [40.00, 100.00]"

]

},
{

"rail_move ur5A blockC": [

"robot_rail_move_start54: [40.00, 100.00]",

"robot_rail_move_end55: [60.00, 120.00]"

]

},
{

"rail_move ur5A blockD": [

"robot_rail_move_start56: [60.00, 120.00]",

"robot_rail_move_end57: [80.00, 140.00]"

]

},
{

"grasp ur5A box": [

"robot_grasp_start38: [80.00, 140.00]",

"robot_grasp_end39: [110.00, 170.00]"

]

},
{

"move_to_home_state ur5A": [

"robot_move_to_home_state_start40: [110.00, 170.00]",

"robot_move_to_home_state_end41: [120.00, 180.00]"

]

},
{

"rail_move ur5A blockD": [

"robot_rail_move_start76: [120.00, 180.00]",
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"robot_rail_move_end77: [140.00, 200.00]"

]

},
{

"rail_move ur5A blockC": [

"robot_rail_move_start78: [140.00, 200.00]",

"robot_rail_move_end79: [160.00, 220.00]"

]

},
{

"rail_move ur5A blockB": [

"robot_rail_move_start80: [160.00, 220.00]",

"robot_rail_move_end81: [180.00, 240.00]"

]

},
{

"rail_move ur5A blockA": [

"robot_rail_move_start82: [180.00, 240.00]",

"robot_rail_move_end83: [200.00, 260.00]"

]

},
{

"release ur5A box box_drop_loc": [

"robot_release_start44: [200.00, 260.00]",

"robot_release_end45: [230.00, 290.00]"

]

},
{

"move_to_home_state ur5A": [

"robot_move_to_home_state_start46: [230.00, 290.00]",

"robot_move_to_home_state_end47: [240.00, 300.00]"

]

}
],

"ur5B": [

{
"rail_move ur5B blockD": [

"robot_rail_move_start66: [0.00, 100.00]",

"robot_rail_move_end67: [20.00, 120.00]"

]

},
{

"rail_move ur5B blockE": [

"robot_rail_move_start68: [20.00, inf]",

"robot_rail_move_end69: [40.00, inf]"

]

}
]

}
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5.2 Multi-request case

Since the one request case starts with empty timelines, the developed framework is

not put to the test since there is only one candidate slot to work with. Hence, to

test the performance of T-HTN upon introduction of multiple requests, we designed a

variant of the first use-case scenario where prior to moving the box, another request

to transfer a can from the near edge of the table to the far edge of the table is

imposed. Figure 5.1 shows a visual representation of the initial state of the world in

a simulation environment. Following the methodology described in Chapter 4, T-HTN

tries to satisfy the first request similar to the one request case, following which it

tries to schedule the second request. In this case, due to a simplifying assumption

that restricts interleaving task plan executions, there are two potential slots where

the resultant task network can be placed based on the release time and due date

constraints on the request: (1) Before the first request is executed. (2) After the first

request is executed. T-HTN evaluates the first potential slot, finds that the generated

plan violates certain spatial constraints imposed by the first request, and hence deems

that slot to be infeasible. The second slot is then evaluated and found to be able to

schedule that request successfully. After committing to the feasible slots, the same

execution engine is invoked, and RViz is used to visualize the robotic activity as

described previously. Figure 5.2 outlines the output specification of T-HTN for the

multi-request variant. In addition, the corresponding STN that was generated while

planning for this use-case scenario is included in Figure A.2 in the Appendix A.

Listing 5.2: The output plan specification generated by T-HTN for the multi-request

variant example as described in Figure 5.1

"timelines": {
"blockA": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start64: [40.00, 180.00]",

"rail_block_ur5A_occupied_end65: [60.00, 200.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start112: [400.00, 540.00]",

"rail_block_ur5A_occupied_end113: [420.00, 560.00]"

]
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Figure 5.1: Two request variant of the use-case scenario that has been introduced
before.

}
],

"blockB": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start66: [60.00, 200.00]",

"rail_block_ur5A_occupied_end67: [80.00, 220.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start110: [380.00, 520.00]",

"rail_block_ur5A_occupied_end111: [400.00, 540.00]"

]

}
],

"blockC": [

{
"ur5A_occupied": [

"rail_block_ur5A_occupied_start68: [80.00, 220.00]",

"rail_block_ur5A_occupied_end69: [100.00, 240.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start108: [360.00, 500.00]",

"rail_block_ur5A_occupied_end109: [380.00, 520.00]"

]
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}
],

"blockD": [

{
"ur5B_occupied": [

"rail_block_ur5B_occupied_start76: [0.00, 220.00]",

"rail_block_ur5B_occupied_end77: [20.00, 240.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start70: [100.00, 240.00]",

"rail_block_ur5A_occupied_end71: [120.00, 260.00]"

]

},
{

"ur5A_occupied": [

"rail_block_ur5A_occupied_start106: [340.00, 480.00]",

"rail_block_ur5A_occupied_end107: [360.00, 500.00]"

]

}
],

"blockE": [

{
"ur5B_occupied": [

"rail_block_ur5B_occupied_start78: [20.00, inf]",

"rail_block_ur5B_occupied_end79: [40.00, inf]"

]

}
],

"box": [

{
"ur5A_grasped": [

"item_ur5A_grasped_start94: [300.00, 440.00]",

"item_ur5A_grasped_end95: [330.00, 470.00]"

]

},
{

"box_drop_loc_released": [

"item_box_drop_loc_released_start96: [420.00, 560.00]",

"item_box_drop_loc_released_end97: [450.00, 590.00]"

]

}
],

"can": [

{
"ur5A_grasped": [

"item_ur5A_grasped_start52: [0.00, 140.00]",

"item_ur5A_grasped_end53: [30.00, 170.00]"

]
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},
{

"can_drop_loc_released": [

"item_can_drop_loc_released_start54: [120.00, 260.00]",

"item_can_drop_loc_released_end55: [150.00, 290.00]"

]

}
],

"ur5A": [

{
"grasp ur5A can": [

"robot_grasp_start42: [0.00, 140.00]",

"robot_grasp_end43: [30.00, 170.00]"

]

},
{

"move_to_home_state ur5A": [

"robot_move_to_home_state_start44: [30.00, 170.00]",

"robot_move_to_home_state_end45: [40.00, 180.00]"

]

},
{

"rail_move ur5A blockA": [

"robot_rail_move_start56: [40.00, 180.00]",

"robot_rail_move_end57: [60.00, 200.00]"

]

},
{

"rail_move ur5A blockB": [

"robot_rail_move_start58: [60.00, 200.00]",

"robot_rail_move_end59: [80.00, 220.00]"

]

},
{

"rail_move ur5A blockC": [

"robot_rail_move_start60: [80.00, 220.00]",

"robot_rail_move_end61: [100.00, 240.00]"

]

},
{

"rail_move ur5A blockD": [

"robot_rail_move_start62: [100.00, 240.00]",

"robot_rail_move_end63: [120.00, 260.00]"

]

},
{

"release ur5A can can_drop_loc": [

"robot_release_start48: [120.00, 260.00]",

"robot_release_end49: [150.00, 290.00]"

]
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},
{

"move_to_home_state ur5A": [

"robot_move_to_home_state_start50: [150.00, 290.00]",

"robot_move_to_home_state_end51: [160.00, 300.00]"

]

},
{

"grasp ur5A box": [

"robot_grasp_start84: [300.00, 440.00]",

"robot_grasp_end85: [330.00, 470.00]"

]

},
{

"move_to_home_state ur5A": [

"robot_move_to_home_state_start86: [330.00, 470.00]",

"robot_move_to_home_state_end87: [340.00, 480.00]"

]

},
{

"rail_move ur5A blockD": [

"robot_rail_move_start98: [340.00, 480.00]",

"robot_rail_move_end99: [360.00, 500.00]"

]

},
{

"rail_move ur5A blockC": [

"robot_rail_move_start100: [360.00, 500.00]",

"robot_rail_move_end101: [380.00, 520.00]"

]

},
{

"rail_move ur5A blockB": [

"robot_rail_move_start102: [380.00, 520.00]",

"robot_rail_move_end103: [400.00, 540.00]"

]

},
{

"rail_move ur5A blockA": [

"robot_rail_move_start104: [400.00, 540.00]",

"robot_rail_move_end105: [420.00, 560.00]"

]

},
{

"release ur5A box box_drop_loc": [

"robot_release_start90: [420.00, 560.00]",

"robot_release_end91: [450.00, 590.00]"

]

},
{
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"move_to_home_state ur5A": [

"robot_move_to_home_state_start92: [450.00, 590.00]",

"robot_move_to_home_state_end93: [460.00, 600.00]"

]

}
],

"ur5B": [

{
"rail_move ur5B blockD": [

"robot_rail_move_start72: [0.00, 220.00]",

"robot_rail_move_end73: [20.00, 240.00]"

]

},
{

"rail_move ur5B blockE": [

"robot_rail_move_start74: [20.00, inf]",

"robot_rail_move_end75: [40.00, inf]"

]

}
]

}

5.3 Benchmarking

To benchmark T-HTN’s performance, we designed another multi-request variant of the

original scenario, which involves moving random objects from one location to another

in the presence of a rail network that acts as a shared global resource constraint

between the two robotic manipulators. All requests are associated with moving

a distinct and new object from its original spawn location to another prespecified

location. Each request within the T-HTN’s domain specification is associated with a

separate release-time and due-date constraints. However, within the POPF’s domain

specification, there is one global deadline enforced on all the requests as there is no

support to specify such constraints for each goal separately. We compare the two

planners based on three metrics that include measuring how long it takes to generate

the plan, the number of actions used to satisfy all the incoming requests, and finally,

the makespan of the final developed plan. Since our framework handles requests one at

a time, we employed a MAPF based simple heuristic function over all the requests to

order them such that the corresponding movement operations are minimized. On the

other hand, POPF does not allow one to order its goal specifications, thereby limiting
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us from extending similar heuristics to its planner. We define the computation time

of a particular planner for satisfying incoming requests as the elapsed time from the

point of invoking the framework to the point of plan generation. Table 5.1 presents

the results of our experiments and showcases the superiority of T-HTN when compared

to POPF.

# Requests Planner Computation Time(s) # Actions Makespan
POPF 000.10 15 230

1
T-HTN 000.03 13 180
POPF 001.17 33 590

2
T-HTN 000.02 22 480
POPF 000.68 34 430

3
T-HTN 000.05 31 780
POPF 002.28 42 570

4
T-HTN 000.04 40 1080
POPF 163.90 53 890

5
T-HTN 000.08 49 1340
POPF NA NA NA

10
T-HTN 000.18 80 2780
POPF NA NA NA

20
T-HTN 000.52 159 5780

Table 5.1: Comparison of T-HTN with POPF planner with respect to computation
time, number of actions and the makespan of the generated plan.

Based on these results, we can see that for a smaller number of requests, T-HTN

can completely outperform POPF in all the mentioned metrics, but as the number

of requests increases, POPF can generate plans with better makespan. However,

it is essential to note that the POPF planner cannot develop any viable plan for

any problem involving more than five requests since it faces memory issues. On the

other hand, T-HTN can handle a large number of requests very quickly with minimal

performance drop in terms of computation time, thereby showing that T-HTN is very

scalable. It further reinstates that our developed framework can handle large problems

involving multiple robots under complex resource constraints. The only metric where

T-HTN underperforms against the POPF planner is the makespan of the generated

plans. We believe that such performance drop is due to our search procedure which

returns as soon as a viable slot is found on the required resource timelines. This
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search strategy causes T-HTN to only ever use the first robotic manipulator for all the

incoming requests since it can find a feasible set of slots for all requests with that

first robot itself. Further, it is essential to note that we strictly enforced that no two

requests are interleaved during execution within T-HTN. Still, POPF does not adhere

to such constraints, which could also explain the blow-up in terms of the makespan

of generated plans by T-HTN.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we presented a comprehensive hybrid HTN-based planner/scheduler

T-HTN that combines the structural power of HTN representation with the expressivity

and flexibility of timeline-based planning frameworks from a goal regression and

resource allocation perspective. Further, this thesis showcases T-HTN’s ability to

enable global coordination of multiple robotic and autonomous systems (as well as

human agents) in carrying out inspection, maintenance, and repair tasks on board a

deep space habitat.

In this system, the HDDL domain representation language was extended to support

multiple novel constructs to bridge the gap between action-based and timeline-based

planning paradigms. Using the updated domain representation, we designed a

planner/scheduler to effectively account for complex temporal and spatial constraints

on task execution and extract significant inter-agent coordination constraints while

providing individual agents with the flexibility to locally cope with some execution

time uncertainty. Additionally, we proposed a novel extension to the HTN paradigm

where one reasons about failing preconditions by constructing task networks that

satisfy them, followed by a robust plan search procedure that incorporates specialized

external planners to generate highly optimized plans.

Finally, we conducted initial testing in multi-robot scenarios involving two UR5

robot arms mounted on a shared rail network to evaluate the effectiveness of the
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proposed framework in managing resources that must be shared across multiple agents.

We also demonstrated the superiority of our framework in comparison to another

widely used temporal planner in terms of computation time, the number of actions

utilized to generate the plan, and scalability.

6.2 Future Work

Several simplifying assumptions were made in the initial implementation of T-HTN,

providing focal points for future work. First, the resource timelines were realized

exclusively as single capacity resources (i.e., resources capable of doing just one task

at a time). Although it seems pretty straightforward, one potential future direction

is to extend resource timeline representations to accommodate multi-capacity robotic

systems that can simultaneously accomplish multiple tasks (e.g., perform a visual

inspection while carrying out a move-object request). Such support will require

slight modification of the domain representation and handling of the corresponding

resource profiles with the timelines. A second simplification that was made was to

simulate the execution of a MAPF algorithm for clearing the path for a planned move

(essentially hard-coding the expected path clearing movements it would produce to

test and debug the procedure for handling preconditions within instantiated task

networks). One obvious extension is to incorporate a state-of-the-art MAPF algorithm

into T-HTN to explore complex scenarios where using such specialized planners will

be advantageous. A third simplification that was made was to restrict T-HTN from

interleaving execution of task plans. Accommodating multiple requests that allow for

overlapping plan executions, although it could potentially lead to much more efficient

task execution behavior, also runs the risk of search space explosion, which brings us

to another critical extension that involves including domain-based heuristics to the

search procedure to help prune infeasible alternatives early on to better tackle the

combinatoric explosion of the search space.

Hence, we aim to continue testing with variants of dual UR5 robot arm problems,

first to assess performance characteristics and subsequently to analyze and quantify

the benefits of the current HTN-based planning approach. We will open-source the

design and implementation of an API for communicating (1) assigned tasks/goals and

(2) coordination constraints with other agents to individual robotic and autonomous
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systems, and for receiving execution status updates back from individual agents to

enable a multi-level, reactive planning framework. Finally, in addition to the proposed

research directions, we intend to benchmark T-HTN on a typical use-case scenario

widely used within the planning community to generate more quantitative results.

However, this process has two issues: (1) It requires mapping the existing problems

into the new syntax required for T-HTN. (2) One also needs to extend these problems

to reason over more complicated temporal constraints to highlight the capabilities of

T-HTN. Lack of similar work within the planning community makes these extensions

to the problems more challenging.
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Appendix A

Appendix

Figure A.1 presents the final STN representation that was generated while planning

for the one request use-case scenario. Figure A.2 offers the final STN representation

that was developed while planning for the multi-request use-case scenario as presented

in Chapter 5. The nodes in Figures A.1 and A.2 represent all the time points that

were generated by T-HTN while the edges between pairs of nodes correspond to their

temporal constraints. Each temporal constraint is marked with 〈 lb, ub 〉 values

which are enforced in accordance with the given domain representation.
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Figure A.1: STN for one request use-case scenario.
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Figure A.2: STN for multi-request use-case scenario.
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[20] Dana Nau, Héctor Munoz-Avila, Yue Cao, Amnon Lotem, and Steven Mitchell.
Total-order planning with partially ordered subtasks. In IJCAI, volume 1, pages
425–430, 2001. 3

[21] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugar Kuter, J. William Murdock, Dan
Wu, and Fusan Yaman. Shop2: An htn planning system. Journal of Artificial
Intelligence Research, 20:379–404, 2003. 3, 4.1
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