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In many applications, uncertainty regarding the duration of activities complicates the generation of accurate plans and schedules.
Such is the case for the problem considered in this paper - predicting the arrival times of buses at signalized intersections. Direct
vehicle-to-infrastructure communication of location, speed and heading information offers unprecedented opportunities for real-time
optimization of traffic signal timing plans, but to be useful bus arrival time prediction must reliably account for bus dwell time
at near-side bus stops. To address this problem, we propose a novel, Bayesian hierarchical approach for constructing bus dwell
time duration distributions from historical data. Unlike traditional statistical learning techniques, the proposed approach relies
on minimal data, is inherently adaptive to time varying task duration distribution, and provides a rich description of confidence
for decision making, all of which are important in the bus dwell time prediction context. The effectiveness of this approach is
demonstrated using historical data provided by a local transit authority on bus dwell times at urban bus stops. Our results show
that the dwell time distributions generated by our approach yield significantly more accurate predictions than those generated by
both standard regression techniques and a more data intensive deep learning approach.

Index Terms—Task Duration prediction, Hierarchical Bayesian Models, Intelligent Transit Systems, Adaptive Control.

I. INTRODUCTION

MANY practical planning and scheduling problems are
complicated by the durational uncertainty inherent in

the tasks that must be performed to achieve stated objectives.
An attempt by a robot to pick up an unstable object can
have multiple outcomes for example, and hence may require
multiple attempts before the larger plan in which the task is
embedded can move forward. Alternatively, a vehicle traveling
from a given pickup location to a given drop-off location
may have several different routes to choose from, with each
route having variable duration and being dependent on current
traffic conditions. Effective planning and scheduling in such
circumstances requires the ability to accurately characterize
this uncertainty.

In this paper, we consider this task duration modeling
challenge in a particular setting, that of predicting bus dwell
times at bus stops in urban road networks. Reliable prediction
of bus dwell times at near-side bus stops is crucial for
determining bus arrival times at signalized intersections, which
in turn opens new opportunities for real-time optimization
of urban traffic flows. We focus on developing probabilistic
dwell time duration models for individual bus stops from
historical data, which can then be sampled for purposes of
real-time prediction. We propose a novel Bayesian hierarchical
approach to constructing probability models that offers several
advantages over traditional statistical learning techniques in
this application context, including the ability to start making
accurate predictions with only minimal past data, the ability to
provide robustness in the midst of a stochastic and noisy under-
lying system, and the ability to deliver measurable confidence
in predictions. To demonstrate the efficacy of the approach, we
present the results of experiments performed using historical
data provided by a local transit authority. Our results show
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that significantly more accurate dwell time distributions can
be derived from far less data than is possible with either
standard linear regression methods, or more contemporary
deep learning techniques.

The remainder of the paper is organized as follows. We
first motivate and provide background information on the
bus dwell time prediction problem. Next, we describe our
Bayesian hierarchical modeling methodology for constructing
bus dwell time models. This is followed by a presentation
of our empirical analysis of its effectiveness in comparison
to other candidate approaches. We then briefly discuss the
potential broader applicability of the work to the general
problem of generating task models for planning and scheduling
systems. Finally, we summarize the main contributions of the
paper and briefly indicate our future research directions.

II. BUS DWELL TIME PREDICTION PROBLEM

As indicated above, our interest in the accurate prediction of
bus dwell times is motivated by the opportunity that it would
provide to improve the real-time dynamic flow of vehicle
traffic through a network of signalized intersections. It is well
known that vehicle flows at signalized intersections constitute
a non-stationary stochastic process, and optimal control of
those flows is NP-hard [1]. Historically, this problem has
been approached by estimating average flow conditions and
developing a fixed signal timing plan (i.e., a fixed ordering
and allocation of green time to various approaches at each
intersection) offline that optimizes for these average condi-
tions. However, advances in distributed computing over the
past two decades have enabled the development of online
planning approaches that produce signal timing plans in real-
time that match the actual traffic on the road. [2, 3]

The Surtrac planning algorithm [3] provides a representative
example of this online planning approach to traffic signal con-
trol. At the beginning of each planning cycle, each intersection
independently senses the traffic approaching in all directions
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and constructs a prediction of when all sensed vehicles will
reach the intersection. This prediction is then interpreted as
a special type of single machine scheduling problem, and
solved is to produce a signal timing plan that minimizes the
cumulative wait time of all vehicles. As each intersection
begins executing its plan, it also communicates an expectation
to its downstream neighbors of what traffic it expects to be
sending their way, giving those intersections the “visibility”
to plan over a longer horizon. Intersection plans are executed
in a rolling horizon fashion and the planning cycle at each
intersection repeats every second.

To manage complexity, the arrival time prediction utilized
by each intersection aggregates individual sensed vehicles
that are approaching from various directions into sequences
of clusters (i.e., queues and platoons) based on proximity.
Since contemporary vehicle detection devices are not typically
capable of providing mode information in real-time, clusters
in this aggregate representation treat all constituent vehicles
similarly. Arrival time prediction of clusters is based on a
single ”free flow” speed parameter.

With the advent of technologies that support direct vehicle-
to-infrastructure (V2I) communication, it becomes straight-
forward to detect vehicle mode in real-time, and distinguish
between different classes of vehicles (e.g., passenger vehicles,
buses, bicyclists, etc.) that can have very different flow pat-
terns, and resulting arrival times. For example, unlike passen-
ger cars, transit vehicles make frequent stops to pick up or
drop off passengers with uncertain dwell times. The presence
of transit vehicles stopping on urban streets can also restrict
or block other traffic on the road depending on stop locations.
Historically, Transit Signal Priority (TSP) systems have been
introduced to streamline and expedite bus movements [4–8].
However, as pointed out by Isukapati et al. [9], by giving
unconditional priority to transit vehicles, these traffic control
strategies fail to optimize the overall traffic flow.

With V2I communication, it will be possible to produce
a more accurate prediction of when buses will arrive at the
intersection. For example, we would expect knowledge of an
approaching bus with an intervening bus stop to trigger a dis-
aggregation of its enclosing cluster, since the bus will block
some trailing vehicles while it is stopped and hence should be
the head of its cluster. A bus stop dwell time model can then
be used to introduce expected cluster delay and propagate the
effects to any additional blocked clusters that may reach the
queue behind the bus before it leaves the bus stop.

The biggest source of uncertainty in this process is reliably
predicting bus dwell times. Isukapati et al. [9], summarized
the statistical characteristics of bus dwell times: 1) they vary
considerably from stop to stop, 2) in addition to seasonal
trends, the variance in dwell times over any interval is sig-
nificant (so averages are not useful), and 3) given the huge
variance in dwell time distributions, any predictive bus dwell
time model needs to learn quickly and update distribution
continuously to generate useful information in the context of
real-time signal control. Consistent with these requirements,
we propose a Bayesian hierarchical framework to predict bus
dwell times in real-time. Previous work in predicting bus dwell
times, which has focused on advance planning issues such as

determination of bus schedules, has relied on linear regression
prediction methods [10–13]. Furthermore, methodologies like
KNNs [14, 15], random forests [16], and deep learning [17–
23] are widely applied in time series forecasting Accordingly,
our experimental analysis in Section V uses well trained linear
regression, online weighted least squares, and a deep learning
based LSTM approach for performance benchmark.

III. BAYESIAN HIERARCHICAL FRAMEWORK

State-of-the-art adaptive planning systems for real-time traf-
fic control employ optimization models to decide how to
allocate scare resources among tasks for optimal performance.
These systems typically assume that current unfinished tasks
have deterministic completion times rather than explicitly
taking task duration uncertainty into account. Then, to account
for dynamic behavior, optimization models are re-run upon
the discovery of new information to generate updated optimal
plans. These approaches tend to be reactive rather than proac-
tive however, and are not likely to be effective for real-time
traffic control. To generate signal timing plans that effectively
optimize overall traffic flow in the presence of buses, it is
necessary to utilize more informed models of bus dwell time
duration that proactively quantify the uncertainty.

Given this goal, our approach is to utilize the availability
of real-time (or near real-time) covariate task duration data
(e.g. variables that influence bus dwell times such as the
number of onboarding and alighting passengers) to produce
more accurate duration models for bus dwell times at specific
bus stops. In this context, there are several challenges. First,
the environment can be highly stochastic and change over
time, making prediction difficult due to the large variance
and dynamic nature of the system. Second, there is often
noise and outliers in available data, necessitating a robust
approach that is not prone to overfitting. Third, the available
training datasets may be small, making models with many
parameters impractical. Fourth, a confidence in the prediction
might be necessary, particularly for control decisions that must
gauge the uncertainty of the model. Fifth, the implementation
of the model in a real-time decision-making system must
be computationally efficient. Finally, being able to interpret
the model and understand the structure of interactions of the
variables is always an important requirement. In the following
sub-sections, we introduce a Bayesian hierarchical framework
that meets these requirements.

A. Key Concepts Of The Framework

Central to the framework is the concept of a rolling
Bayesian update scheme. Instead of learning a model from
a training dataset, or using historical data from multiple
qualitatively similar time intervals, we make predictions using
a small set of continually updated model parameter distribu-
tions. A fundamental component of the proposed framework
involves the use of an appropriate analytical statistical model
that is determined offline and subsequently refined online.
Such a scheme has several advantages over feature-engineered
solutions that rely on subsets of historical data at any given
time. In many real-world contexts, task duration constitutes a
highly stochastic non-stationary process. Consequently, finding
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informative historical data for any point in time is a difficult
and noise-prone endeavor, yielding little valuable signal for
the comparatively complex system design. In contrast, high
correlation between task duration model parameters exists
between short intervals. As a result, there is significant value
in maintaining real-time beliefs of a predictive model and
continually updating its parameters in the light of new data.
This results in a lightweight framework that naturally adapts to
underlying non-stationary stochastic process, quickly improves
with more observations, and easily generalizes to various task
duration prediction scenarios.

A second key concept of the framework is its hierarchical
nature – the predictions of a “lower” model can be fed in
as inputs to a “higher” model. For example, consider a task
duration model with three input covariates [x1, x2, x3]. As
illustrated in Fig 1, only x1, x3 are directly observed, and x2

is estimated by a model at different layer, and the estimated
value of x2 in turn, feeds as an input for the main task duration
model. This concept is illustrated in the application section of
this paper.

Fig. 1: Hierarchical Bayesian Framework

The following sub-sections provide details on the individual
steps in using the framework.

B. Selecting The Likelihood Function For Task Duration

The first step is to find an analytic distribution that best
describes the empirical task duration distributions. Although,
in principle, one could choose a distribution commonly used to
model task durations, such as the log-logistic distribution, it is
important to select the distribution that best matches historical
data. Unlike the training stages for many complex statistical
models, this analysis step, which involves fitting analytical
distributions and assessing their statistical similarities, does
not require a large amount of data.

Algorithm 1 describes the methodology for choosing a
task duration likelihood function. The first step is to chrono-
logically order the task duration data. The next step is to
develop empirical cumulative density functions (CDFs) F
based on temporally sequential sets of observations that fall
within the time window of interest. To ensure tight track-
ing of time-varying parameter distributions, it is prudent to
consider intervals of time consistent with decorrelation of the
underlying process. In case the task durations δi in the data
are discretized (due to rounding errors), use Kernel Density
Estimation (KDE) techniques to obtain a continuous CDF.
Next, use the same temporally sequential sets of observations

to fit analytic distributions. The next step is to statistically
analyze similarities between the empirical CDF and each of
the analytic distributions using the Maximum Deviation Test
(MDT) [24].

Algorithm 1 Choose Task Duration Likelihood Function

1: D ← chronologically ordered task duration data
2: (ti, δi)← time stamp & task duration of record i in D
3: (tl, tu)← lower & upper bounds of time interval
4: η ← length of time window of interest
5: initialize (tl, tu)← (0, η)
6: for (ti, δi) ∈ D do
7: L← [ ]
8: if tl ≤ ti < tu then
9: append δi to L

10: else
11: compute empirical CDF F from data in L
12: fit n CDFs F ′ ← [F1, ..., Fn] to data in L
13: S ← MDT scores for F & each CDF in F ′

14: write MDT output [F, F ′, S] to an output file
15: update (tl, tu)← (tu, tu + η)

As the name suggests, the maximum deviation test is a
statistical technique designed to quantify statistical differences
between two probability density functions. The methodology
employed here measures the statistical similarity between the
empirical task duration distribution and each of the analytic
distributions using MDT scores. The MDT score is defined as
the number of percentile values in an analytic CDF (F ′i ) that
are within a user-defined threshold of the empirical CDF (F ).
The analytic distribution with the highest MDT score (smax) is
statistically most similar to the empirical distribution. Pseudo-
code for the methodology is given in Algorithm 2.

Algorithm 2 Maximum Deviation Test

1: εtol ← error tolerance threshold
2: F ← empirical CDF
3: F ′ ← [F1, ..., Fn]← CDFs of n analytic distributions
4: initialize test scores S ← [0, 0, ..., 0]
5: for Fi ∈ F ′ do
6: for p in [0, 100] do
7: ε← F−1(p)−F−1

i (p)

F−1(p) × 100

8: if abs(ε) ≤ εtol then
9: si ← si + 1

10: smax ← max(S)
11: return Fk corresponding to smax

Most non-parametric tests, such as the Kalmagorov-
Smirnov (KS) test [25], use maximum deviation from the
mean as a measure to check for dissimilarity. Therefore, these
tests fail to recognize dissimilarities in heavy-tailed, or multi-
modal distributions. On the other hand, MDT uses the sum of
deviations of every percentile of the distribution as a measure
of dissimilarity. This property, in addition to the symmetric
nature of the test, makes MDT a very powerful test over either
the KS Test or the Kullback-Leibler (KL) Divergence test [26].
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Note that if covariate data is not available a priori for
prediction, this process can be also be used to determine an
appropriate analytical distribution to estimate covariates. For
example, while selecting likelihood function for dwell time
distributions, we considered the six analytical distributions due
to their common usage in survival analysis: Non-central F,
Burr, Weibull, Beta, Log-normal, and Fisk (Log-logistic). We
used small samples of historical data and MDT test to identify
which of the six analytical distributions best explain the data.

C. Setting Priors And Generating Predictions

Algorithm 3 Real-Time Bayesian Inference for Task Duration
Under Uncertainty

1: Ct ← predicted (or observed) covariates at time t
2: M ← most recent MCMC parameter samples
3: σt ← lower threshold for standard deviation of M
4: σr ← standard deviation to reset M
5: P ← the variable to predict
6: p̂t ← prediction for P generated at time t
7: set up priors for the parameters
8: while t <∞ do
9: if M is not None then

10: R← samples of parameters from M , using Ct
11: S ← samples of P for each parameter sample in

R using P ’s parameterized distribution
12: Smed ← median of each sublist in S
13: p̂t ← mean of Smed
14: if new observation for P is available then
15: pt ← new observation for P
16: KM ← set of Kernel Density Estimates for each

parameter in M
17: L← likelihood of P , parameterized by the distri-

butions of parameters KM and covariates Ct
18: M ← samples of approximate posterior distribu-

tion of the parameters obtained with Metropolis-Hastings
algorithm on previous M , using L and pt

19: for Mi ← samples for parameter i ∈M do
20: σi ← standard deviation of Mi

21: if σi < σt then
22: µi ← mean of Mi

23: Mi ← samples from N(µi, σ
2
r)

The next step after choosing the likelihood function(s) (the
output of algorithm 1) is to choose a prior distribution for each
parameter of the task duration analytical distribution, and any
parameters necessary for other models used in the hierarchy
for covariate estimation. If the distribution parameters are
expressed, for example, as a linear combination of input
covariates, then prior distributions for each weight must be
chosen. This is a fairly straightforward process – one can
either choose a predictive prior based on a historical dataset
or an uninformed prior in the absence of such data. A unique
feature about any Bayesian approach is that the impact of
the prior on the posterior predictive distribution diminishes as
more Bayesian updates are made in the light of new data.

Once the task duration analytic distribution and model
parameter priors are chosen offline, the model can be de-

ployed.Observed data is used to perform an online Bayesian
update and obtain the posterior distribution over the model
parameters. These distributions are then used as priors for the
next Bayesian update, and are used to obtain the posterior
predictive distribution for the task duration. As mentioned
earlier, closed form solutions for the posterior distributions
are generally not available, and often they are computed
using numerical integration [27], MCMC [28] methods, or
nested sampling techniques [29]. In this paper, we use the
Metropolis Hastings algorithm to obtain MCMC samples of
the posterior distributions. The specific details of this algo-
rithm are presented in Algorithm 3. Posterior distributions
of the model parameters are used in computing the posterior
task duration distribution. A choice descriptive statistic (e.g.
mean or median) of the resulting task duration distribution
can be used to inform control decisions. Moreover, a precision
parameter (or variance) of the posterior predictive distribution
provides insight into ”how good” a specific prediction is. In
fact, one can make use of this information to make decisions
on whether to incorporate a specific prediction value in task
planning and scheduling.

Lastly, while designing the system, it is important to pay
attention to the convergence and mixing properties of numer-
ical integration algorithms (in this case MCMC). Failing to
do so may result in model parameters converging to point
distributions. As noted by Brown et al. [30], there are three
conditions under which MCMC posterior parameter estimate
might converge to a point distribution: 1) existence of multiple
local peaks in the posterior will make it difficult for MCMC
algorithm to traverse the space of parameters; 2) even if the
posterior is single mode, MCMC does not mix well due to
the existence of equal posterior density for a large regions of
the posterior; 3) overly informative priors favors unreasonable
large branch lengths. In theory, these problems can be tackled
by specifying compound Dirichlet priors for branch lengths.
However, this can also be prevented by ensuring the standard
deviation of the posterior does not converge to zero. In this
work, we empirically determined lower bounds on the stan-
dard deviation of each parameter distribution. If the standard
deviation of any parameter’s posterior distribution falls below
this lower bound, the parameter is reset to have a Normal
distribution with the same mean and a standard deviation
above the lower bound.

It is important to note that this algorithm is used in a rolling
fashion to make task duration predictions for each task in real-
time. Thus, there is no need for a training dataset to learn the
model parameters since they are estimated online via Bayesian
updates. As we will demonstrate in subsequent sections of this
paper, this framework is able to generate highly predictive
models of task durations that are resilient to non stationary
stochastic processes.

IV. EXPERIMENTAL ANALYSIS

A. Model Overview

Constructing a predictive bus dwell time distribution model
involves three sub-tasks: 1) choosing the likelihood function
for posterior updates; 2) choosing principal covariates that
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influence dwell time distributions; and 3) formalizing a dwell
time model using information from the previous sub-tasks.

B. Likelihood Function For Posterior Updates

Consistent with the guidance provided in the framework
(algorithms 1 & 2), we used historical data for choosing a
likelihood function. Specifically, we used the Port Authority
of Allegheny County’s (PAAC) Advanced Vehicle Location
(AVL) weekday dataset for the period from September 2012
to August 2014 for two major bus routes – 71A and 71C.
The data is chronologically ordered, and empirical CDFs
based on every fifteen minutes of data are created. Dwell
times in the APCC dataset are rounded to the nearest second.
To address this, two different continuous empirical CDFs
are generated using Gaussian, and Gamma KDE techniques.
Next, using the same temporally sequential data six analytic
distributions (Non-central F, Burr, Weibull, Beta, Log-normal,
and Fisk or Log-logistic) are generated (as mentioned earlier,
we choose these six analytic distributions due to their common
usage in survival analysis). Max-deviation scores are computed
between each analytic distribution fit and each of the two
empirical distributions. Based on MDT scores, we chose
the Log-logistic (Fisk) distribution as the likelihood for the
posterior updates.

C. Covariates For Dwell Times

In order to develop a dwell time model with covariates,
several relationships were explored between covariate data
and dwell time, such as the number of onboarding passengers
(xon), number of alighting passengers (xoff), and load of the
bus (xload). A clear positive correlation was found between
first two covariates and dwell time, which were chosen as
covariates in developing the predictive dwell time distribution
model. A scatter plot demonstrating the relationship between
the number of onboarding passengers and the dwell time is
presented in Fig 2. Fig 3 demonstrates not only that more
onboarding passengers corresponds to longer dwell times, but
also that the variance of the dwell time increases as more
passengers board.

Fig. 2: Scatter plot of # onboardings vs. dwell times

Fig. 3: Conditional dwell time distributions for several num-
bers of onboarding passengers. Note that the variance is larger
when more passengers board.

D. Dwell Time Model With Covariates
The following describes a Bayesian parametric model for

bus dwell times using two covariates xon and xoff. Based on the
analysis presented in the subsection on choosing the likelihood
function, bus dwell time is modeled as a random variable X
following a Log-Logistic (Fisk) distribution. Equivalently, bus
dwell times X are distributed following the exponential of the
Logistic distribution. Covariate parameters are introduced by
parameterizing the s parameter, and the median of the Log-
Logistic distribution. The exponential relationship between
the Logistic and Log-Logistic distributions is used in this
formulation. This parameterization is described below:

X = exp(Y ) (where Y ∼ Logistic(µ, s))

µ = ln(α) = ln(βTαx+ β0)

s = 1/τ = 1/(βTτ x)

βα =
[
βon
α βoff

α

]T
βτ =

[
βon
τ βoff

τ

]T
x =

[
xon xoff

]T
At any given time, the belief of the two parameters µ and s

describe current belief of bus dwell time distribution. In a real-
time system with access to dwell time observations, belief of
the parameter distributions is continuously updated in the light
of new data. Bayes’ Theorem offers a natural way to achieve
such an update scheme. As only one observed dwell time d is
considered during any Bayesian update, the likelihood function
is given by

L(µ, s| ln(d)) = f(ln(d), µ, s)

Where f is the probability density function of a Logistic
distribution.

Before obtaining any posterior distributions to use as priors,
we bootstrap the model using a Normal prior for each of the 4
covariate parameters: βon

α , βoff
α , βon

τ , βoff
τ , and offset parameter

β0. Once a set of posterior distributions is obtained, the most
recent posterior distributions are used as priors in the next
Bayesian update. The Metropolis Hastings algorithm is em-
ployed to obtain MCMC samples of the posterior distributions
for four covariate parameters and the offset parameter.
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To make a dwell time prediction for an approaching bus, we
observe values for covariates xon, and xoff, and use posterior
distributions of each β to determine the posterior predictive
distribution of X .

This process is repeated in the light of new data, using the
most recent posterior distributions of each β as priors in the
next Bayesian update. The means and standard deviations of
several model parameters are shown in Fig 4 and 5, where a
real-time prediction scenario is simulated on historical data in
a rolling fashion.

Fig. 4: Means of model parameters throughout simulation.
beta 1 corresponds to βα, beta 2 corresponds to βτ

Fig. 5: Standard deviations of model parameters throughout
simulation. Note that the MCMC samples are reset when the
standard deviation falls below a specified threshold.

V. MODEL TESTING

The efficacy of the proposed dwell time prediction model
was tested on bus dwell time data provided by the Port
Authority of Allegheny County in Pittsburgh, Pennsylvania
for the period from September 2012 to August 2014. While
the dataset spans over two years, data from October 2012 is
used to test the Bayesian model. We compared the results of
the Bayesian model to those of a linear regression model for

bench-marking purposes. We trained a linear regression model
on September 2012 and tested on October 2012, which are
good training and test datasets since it is widely accepted that
seasonal trends in bus dwell time distributions are statistically
similar [9] (also, readers interested in dwell time distribution
models can find comprehensive reviews in [9]). Therefore,the
linear regression model is not really put to the test. In principle,
regression equations for September 2012 & October 2012
should look very similar, suggesting that predictions on the
test dataset should be reasonably good. However, the main
objective of this analysis is to evaluate the robustness of the
proposed framework. In other words, the goal is to check
whether the Bayesian model is able to predict dwell times
without any training and how good those predictions are
compared to predictions from a well-trained traditional model.

With these objectives in mind, the robustness of the
Bayesian framework was evaluated at twelve different bus
stops in the East End region along Centre Avenue corridor
in Pittsburgh, PA.

A. Cumulative Density Functions Of Dwell Times

Analyzing cumulative density functions (CDFs) of dwell
times provides useful insights into the reliability (presence
or absence of variance) of these distributions. From the
standpoint of stochastic dominance, the distributions with
curves furthest to the left have smaller variance in dwell time
distributions and hence are more reliable.

Fig. 6: Cumulative density functions of dwell times

Fig 6 presents dwell time CDFs for test bus stops of interest.
It can be seen that dwell time distributions have the largest
variance at Negley Ave at Centre Ave (CDF in red), followed
by Centre Ave at Aiken Ave (blue), Centre Ave at Morewood
Ave (cyan), Centre Ave at Craig St NS (peach), and Centre
Ave at Millvale (light grey). This information is useful because
predicting dwell time distributions at these intersections is
particularly hard due to their highly stochastic nature.

B. Model Performance

As mentioned earlier, the efficacy of the Bayesian model is
evaluated on data from October 2012. The results are bench-
marked against well trained linear regression, online least
squares, and LSTM models trained offline on September 2012
data. The same Bayesian parametric model is applied to each
of the bus stops, and we set Normal priors for each of the
4 covariate parameters and the offset parameter β0. Covariate
parameters are updated on an ex post facto basis, and dwell
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TABLE I: Model Performance Comparisons

[-5, 0] [0, 5] [-5, 5]Bus Stop L.R Fisk O.L.S LSTM L.R Fisk O.L.S LSTM L.R Fisk O.L.S LSTM
AM 0.11 0.22 0.03 0.08 0.31 0.29 0.38 0.11 0.42 0.51 0.42 0.19
PM 0.11 0.20 0.06 0.39 0.40 0.44 0.32 0.17 0.51 0.64 0.38 0.22Centre Ave

at Aiken Ave All 0.10 0.21 0.02 0.08 0.39 0.41 0.37 0.13 0.49 0.63 0.39 0.21
AM 0.13 0.18 0.02 0.02 0.13 0.33 0.16 0.05 0.27 0.51 0.19 0.07
PM 0.08 0.14 0.05 0.08 0.09 0.33 0.17 0.10 0.16 0.47 0.22 0.18Negley Ave

at Centre Ave All 0.10 0.15 0.02 0.07 0.11 0.32 0.16 0.08 0.21 0.46 0.17 0.15
AM 0.20 0.33 0.07 0.26 0.59 0.52 0.61 0.57 0.79 0.84 0.68 0.83
PM 0.13 0.21 0.07 0.60 0.66 0.66 0.78 0.32 0.79 0.87 0.85 0.92Negley Ave

at # 370 All 0.15 0.29 0.02 0.19 0.63 0.57 0.71 0.66 0.78 0.86 0.73 0.85
AM 0.23 0.31 0.04 0.16 0.45 0.48 0.35 0.22 0.69 0.79 0.39 0.38
PM 0.18 0.26 0.20 0.07 0.55 0.47 0.60 0.37 0.73 0.73 0.80 0.44Centre Ave

Opp Neville St All 0.21 0.29 0.02 0.12 0.51 0.50 0.50 0.34 0.72 0.79 0.52 0.46
AM 0.25 0.36 0.03 0.11 0.54 0.45 0.62 0.45 0.79 0.80 0.65 0.57
PM 0.22 0.27 0.15 0.22 0.48 0.48 0.69 0.23 0.70 0.75 0.84 0.46Centre Ave

at Shadyside Hos All 0.20 0.30 0.03 0.15 0.52 0.46 0.53 0.28 0.73 0.76 0.56 0.43
AM 0.16 0.25 0.05 0.08 0.38 0.35 0.41 0.12 0.54 0.61 0.46 0.20
PM 0.15 0.37 0.11 0.12 0.58 0.44 0.44 0.35 0.73 0.81 0.55 0.47Centre Ave

at Morewood Ave All 0.15 0.28 0.07 0.10 0.52 0.45 0.43 0.18 0.67 0.73 0.50 0.28
AM 0.14 0.25 0.16 0.10 0.41 0.45 0.49 0.18 0.54 0.71 0.65 0.27
PM 0.18 0.35 0.25 0.16 0.50 0.44 0.53 0.25 0.68 0.79 0.79 0.41Center Ave

at Millvale Ave All 0.13 0.28 0.03 0.11 0.51 0.50 0.39 0.17 0.65 0.78 0.41 0.28
AM 0.21 0.25 0.02 0.12 0.46 0.51 0.58 0.23 0.67 0.76 0.60 0.35
PM 0.23 0.30 0.15 0.14 0.54 0.50 0.54 0.33 0.77 0.79 0.70 0.47Centre Ave

at Melwood Ave All 0.20 0.28 0.02 0.11 0.54 0.52 0.54 0.24 0.74 0.80 0.56 0.35
AM 0.17 0.34 0.07 0.16 0.57 0.44 0.62 0.31 0.73 0.78 0.69 0.47
PM 0.24 0.34 0.15 0.21 0.53 0.42 0.48 0.26 0.76 0.76 0.64 0.47Centre Ave

at Graham St All 0.19 0.31 0.02 0.16 0.59 0.48 0.53 0.25 0.78 0.80 0.55 0.41
AM 0.19 0.30 0.09 0.07 0.55 0.47 0.59 0.30 0.74 0.77 0.68 0.37
PM 0.09 0.26 0.15 0.24 0.53 0.42 0.65 0.24 0.62 0.68 0.80 0.47Centre Ave

at Cypress St All 0.16 0.26 0.11 0.10 0.54 0.46 0.68 0.22 0.70 0.73 0.79 0.31
AM 0.07 0.17 0.03 0.11 0.25 0.32 0.30 0.16 0.32 0.49 0.33 0.28
PM 0.15 0.13 0.18 0.06 0.26 0.30 0.38 0.18 0.42 0.43 0.55 0.24Centre Ave

at Craig St NS All 0.11 0.17 0.02 0.08 0.26 0.34 0.33 0.15 0.37 0.51 0.34 0.23
AM 0.22 0.32 0.04 0.29 0.60 0.51 0.42 0.44 0.82 0.82 0.46 0.74
PM 0.21 0.28 0.14 0.23 0.54 0.50 0.65 0.30 0.76 0.78 0.80 0.53Centre Ave

Opp Shadyside Hos All 0.21 0.29 0.04 0.16 0.57 0.49 0.46 0.36 0.79 0.78 0.49 0.52

time predictions are made starting from the very first new data
point onward.

We use the ability to predict dwell times within a small error
threshold as a performance metric to evaluate the models. The
rationale for choosing small error bounds is to account for
the fact that these dwell time values are used by planning
algorithms in real-time systems, so larger errors will generate
schedules that are far from optimal. For this reason, the
fraction of predictions within error bounds of [-5, 5] seconds
is used as a performance metric. Effectively, this fraction
represents the area under the error distribution density function
within these tolerance bounds. This is a more informative
metric in the context of traffic signal scheduling due to
the importance of maximizing the proportion of very close
predictions.

Table I summarizes the performance of these four models.
As can be seen, this table contains three sets of performance
comparisons: 1) morning peak hour (“AM”, 7:00 - 10:00 AM);
2) evening peak hour (“PM”, 4:00 - 7:00 PM); and 3) the
entire test dataset (“All”). This table has four columns: the
first column presents bus stop location information; the second
column presents fraction of dwell time predictions with an
error between -5 and 0 seconds; and the third and fourth
columns contain similar information but for ranges of [0, 5]
and [-5, 5] seconds respectively. Lastly, each row contains
results for a specific bus stop.

The following inferences can be drawn based on these
results: First, for the most part, the Bayesian predictive model
performs at least as good as or better than the other three

Fig. 7: Fraction of absolute prediction error within a threshold
for our framework vs. linear regression. Note that the Bayesian
hierarchical model has a higher proportion of small errors.

models. This is very encouraging to see as it validates the
main philosophy behind the development of this framework,
i.e., to develop a predictive probabilistic model for estimating
task durations without making use of large training datasets.
Second, for the scenarios in which dwell time distributions are
highly stochastic (see Fig. 6), the Bayesian prediction model
significantly outperforms the other models (refer to results for
Negley Ave at Centre Ave, Centre Ave at Aiken Ave, and
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Fig. 8: Fraction of absolute prediction error within a threshold
for our framework vs. online least squares regression.

Centre Ave at Craig St NS). Fig. 7 demonstrates this trend
for Negley Ave at Centre Ave - the Bayesian model has a
much higher proportion of very close predictions than the other
error distributions. This again corroborates the hypothesis of
quick adaptability of the Bayesian model. Third, in addition to
dwell time estimates, the variance or precision parameter of the
Bayesian model quantifies the uncertainty of each prediction.

C. Hierarchical Bayesian Model

To demonstrate the ideas of hierarchical model, a variant
of dwell time estimation model is considered. This model
takes two input covariates: 1) estimated value of number
of onboardings (x̂on), and 2) observed value of number of
alightings (xoff). Arrival rate of passengers at a bus stop can
be modeled as a doubly stochastic Poisson process, and we
developed a Bayesian model to estimate these arrival rates.
This model uses predicted arrival rate and known bus headway
in estimating x̂on. The model details are presented below.

Let Yi represent the number of passengers boarding the bus
during a bus arrival event i. The arrival rate of passengers
at a bus stop is modeled using λ parameter of a Poisson
distribution. For the purpose of Bayesian updates, the posterior
for λ represented by p(λ|y) is derived as:

p(y|λ) = Πn
i=1

λyie−λ

yi!
∝ λnye−nλ

This is the kernel of a Gamma distribution. Therefore, if
λ ∼ Ga(α, β), then

p(λ|y) ∝ p(y|λ)p(λ)

p(λ|y) ∝ λnȳe−nλλα−1e−βλ

p(λ|y) = λα+nȳ−1e−(β+n)λ

p(λ|y) ∼ Ga(α+ nȳ, β + n)

where β is the number of previous observations and α is
the sum of previous arrival rates.

A non-informative prior such as Jeffrey’s prior is used to
bootstrap the system. So p(λ) ∝ J(λ)

1
2 where J(λ) is the

Fisher information, which is the negative expectation of the
second derivative of the log likelihood.

log p(y|λ) = −log (y!) + ylog (λ)− λ(log likelihood)

The second derivative of the above function is equal to −yλ2 .

J(λ) = −E[
−y
λ2
|λ] =

1

λ

J(λ)
1
2 =

1√
λ

The previous equation can be treated as Ga( 1
2 , 0). Note that

this is an improper Gamma distribution, but it is acceptable
for the purpose of Bayesian updates.

In order obtain a posterior arrival rate distribution via a
Bayesian update, a list of observed arrival rates are maintained,
which are defined by the number of onboardings divided by the
headway. Once a new observation (headway and onboardings)
is made, the arrival rate is computed and appended to the
list. A new value for α is calculated as sum of the recent β
arrival rate observations, where β is an integer that should
be empirically found to maximize prediction accuracy. An
onboarding prediction for an approaching bus is made by
multiplying a point estimate of the posterior arrival rate
distribution (e.g., mean, median) with the headway. Here the
headway information can be obtained from published bus time
tables.

The hierarchical model was tested at five out of twelve
intersections, and results are summarized in Table II. The
results are not bench-marked against any traditional learning
model, as the main idea is to demonstrate details of the
hierarchical Bayesian framework.

TABLE II: Hierarchical Fisk Model

Bus Stop [-5,5]
AM 0.36
PM 0.60Centre Ave

at Aiken Ave All 0.50
AM 0.43
PM 0.35Negley Ave

at Centre Ave All 0.42
AM 0.82
PM 0.81Negley Ave at

#370 All 0.83
AM 0.49
PM 0.40Centre Ave at

Craig St NS All 0.47
AM 0.72
PM 0.78Centre Ave at

Shadyside Hos All 0.67

VI. BROADER APPLICABILITY

Although our principal research interest is effectively utiliz-
ing V2I communication of real-time information from buses
to improve real-time traffic control decisions, we believe that
the Bayesian hierarchical framework presented in this paper
has broader applicability to other planning and scheduling
under uncertainty problems. To cope with uncertainty in task
durations and outcomes, a range of techniques for building
resilient plans and schedules have emerged over the years.
Some techniques have relied on knowledge of uncertainty
limits to generate plans that retain temporal flexibility [31–34].
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Others have exploited probabilistic models of task duration
and outcome uncertainty to generate plans or policies that
optimize expected behavior [35–39]. Still other techniques
have used probability distributions to predict durations within
deterministic optimization procedures [40, 41]. In all cases
however, the effectiveness of these techniques depends on the
availability of good probabilistic task models.

There are four primary advantages of using the Bayesian
hierarchical framework introduced above. First, it offers robust
predictions in highly stochastic and noisy environments, which
often have a large variance and noise in both the independent
and dependent variables that are incorporated. Second, the
Bayesian approach effectively addresses uncertainty by deliv-
ering a confidence in the prediction in the form of a posterior
predictive distribution. Planning and scheduling systems can
then use this confidence to inform their decisions. Third,
the framework requires little data, both in the selection and
prediction stages. The selection stage involves choosing the
likelihood for the task duration variable and prior distributions
for the model parameters, both of which can be computed from
a small amount of historical data. In the prediction stage, the
model can begin making predictions and updating the posterior
distribution in a rolling fashion, removing the need for a “train-
ing” dataset. Fourth, the model is computationally efficient
because analytical conjugate posterior distributions are simply
described by their parameters, and non-conjugate distributions
can be sampled efficiently using Markov Chain Monte Carlo
(MCMC) methods, or nested sampling techniques.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a hierarchical Bayesian predictive prob-
abilistic model for task duration predictions in real-time sys-
tems. The framework is computationally efficient, reduces the
problem of overfitting, and requires little or no training to
start producing good predictions. Furthermore, unlike tradi-
tional learning models, the proposed framework effectively
addresses uncertainty by delivering a confidence in the predic-
tion through the posterior predictive distribution, rather than
simply supplying a point estimate.

The ideas presented in the framework are tested in the
context of predicting dwell time distributions of a transit buses
in urban networks. Specifically, a Bayesian parametric model
for bus dwell times was created using two covariates, xon, and
xoff. The efficacy of this model is tested at twelve different bus
stops in the East end region of Pittsburgh, PA on real-world bus
dwell time data. The results of the model are bench-marked
against those obtained from both linear and online regression
models. The results demonstrate that the Bayesian model is
able to perform at least as good as, and in most instances
far better than both traditional learning models and recently
popular deep learning models.

Finally, to demonstrate the ideas of hierarchical models, a
new dwell time estimation model was considered. The input
parameter xon was estimated, whereas the other parameter xoff
was observed. Model details are presented for estimating x̂on.
The hierarchical model was tested at the twelve intersections
and the results do validate the usefulness of the framework.

We envision two future directions to this research: First, we
are interested in integrating the bus dwell time model into an
online planning algorithm like Surtrac to investigate the system
performance improvements. Second, we want to investigate
the efficacy of this framework in other domains of planning
& scheduling.
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