VIRAJ PARIMI

Email: vparimi@mit.edu \diamond (412) 626-1630 \diamond http://people.csail.mit.edu/vparimi

EDUCATION

Massachusetts Institute of Technology (MIT) Doctor of Philosophy in EECS <i>Relevent Coursework</i> : Algorithms for Inference, Robotic Manipulation, Computational Sensorimotor Learning, Theory of Computation	Cambridge, MA Present
Carnegie Mellon University (CMU) - School of Computer Science Master of Science in Robotics GPA: 4.08/4 <i>Relevent Coursework</i> : Computer Vision, Mathematical Fundamentals for Robotics, Graduate Artificial Intelligence, Statistical Techniques in Robotics, Planning and Decision Making in Robotics, Mechanics of Manipulation	Pittsburgh, PA August 2021
 Indraprastha Institute of Information Technology (IIIT) Bachelor of Technology in Computer Science and Engineering (Honors) GPA: 8.96/10 Relevant Coursework: Statistical Machine Learning, Deep Learning, Advanced Operating Systems, Graph Theory, Numerical Methods, Computer Graphics Natural Language Processing, Network and Systems Security, Parallel Programming 	Delhi, India May 2019

EXPERIENCE

 MERS Research Assistant Developed a multi-agent task and motion planner for multiple forming tasks such as CAD assembly. Working on safe skill learning by combining multiple hybrid straints and frame a formalism which can be deployed in magnetic straints and frame a formalism which can be deployed in magnetic straints.	-constraint concurrent automata with safety con-
 NASA HOME STRI Research Assistant Developed a robust multi-agent planner by combining timeli frameworks and deployed the planner in a test-bed designed 	
 RISS Research Scholar Developed a computationally scalable bayesian sequential le up to 4 orders of magnitude speed improvement comp 	0
 Precog Data Analytic Intern Devised data analytic tool for National Bomb Data Center ((NSG) to generate analysis based on historic data. 	Delhi, India May 2017 - September 2017 (NBDC) working under National Security Guards

 $\cdot\,$ Assembled tool that automates whole process from input stage to output stage where useful insights are passed upon user request.

PUBLICATIONS

T-HTN: Timeline based HTN Planning for Multiple Robots	
<u>V. Parimi</u> , Z. Rubinstein, S. Smith	
ICAPS, Hierarchical Planning	

T-HTN: Timeline based HTN Planning for Multi-Agent Systems

2022

Master's Thesis, CMU	
On the Vulnerability of Community Structure in Complex Networks <u>V. Parimi</u> , A. Pal, S. Ruj, P. Kumaraguru, T. Chakraborty Principles of Social Networking, Springer	2021
Hierarchical Bayesian Framework for Bus Dwell Time Prediction I. Isukapati, C. Igoe, E. Bronstein <u>V. Parimi</u> , S. Smith IEEE Transactions on Intelligent Transportation Systems	2020
Analysis of DSRC accuracy for pedestrian localization A. Lakshman [*] , <u>V. Parimi[*]</u> , S. Smith RISS 2018 Working Paper Journal	2018

SELECTED PROJECTS

Automatic Reward Densification

Prof. Pulkit Agrawal

• Implemented a system that is able to leverage classical planning over human specified PDDL models to automatically increase the density of robotic tasks with sparse, goal-based reward

Catching a Ping Pong Ball with an iiwa Prof. Russ Tedrake

• Programmed the kinematics of a Kuka iiwa using Drake to catch a ping pong ball with a ping pong paddle

· Applied finite-state machine (FSM) techniques to model the paddle's trajectory off equations of motion of projectiles while in a pre-initial-contact mode, while we switched to a PD controller with offset stabilization in the post-initial-contact mode

Sampling-based Planning in Discrete Space Prof. Maxim Likhachev

- Proposed a hierarchical decomposition algorithm where we discretize the continuous sample space of PRM/RRT algorithms in order to provide tighter completeness guarantees.
- · Demonstrated the performance improvement of the proposed approach for 6-link robotic arm.
- Lossy Compression using Neural Networks Prof. Zico Kolter
- · Formulated quantization techniques to generate discrete latent space representations among image and text based autoencoder models without significant performance implications.
- Showcased that incorporating commit-loss to the learning process improved the compression ratio of both image and text based models while maintaining the quality of reconstructions.

COTTON

Prof. Vivek Kumar

- · Developed a light-weight work-stealing runtime for async-finish task parallelism which was energy efficient without incurring significant impact on the performance.
- Used different power saving drivers in combination with cpufreq to change the CPU frequency based on some task based heuristics.

Understanding Vulnerability of Communities in Complex Networks IIIT-Delhi | May 2018 Prof. Tanmoy Chakraborty & Prof. Ponnurangam Kumaraguru

- · Identified vulnerable nodes in communities defined in a complex network by investigating several global and community centric properties to observe their effects on underlying community structure of the network.
- · Proposed a hierarchical greedy heuristic based approach with a novel task based extrinsic evaluation strategy to measure its robustness.

Autoencoder based Recommender System Prof. Angshul Majumdar

IIIT-Delhi | November 2017

CMU | November 2020

MIT | November 2021

CMU | May 2020

IIIT-Delhi | November 2018

MIT | May 2022

- \cdot Engineered a new recommender system for GitHub where users are suggested with relevant repositories to contribute towards based on profiles while leading a group of 2.
- $\cdot\,$ Applied similar technique to single-celled RNA-seq data and showed better gene expression recovery compared to other alternatives.

Advanced Application for Social Media Analytics (AASMA).IIIT-Delhi | November 2016Prof. Ponnurangam KumaraguruIIIT-Delhi | November 2016

· Collaborated with a team of 7 people to extend a tool launched by CERC Lab by incorporating sentiment model along with improvements in efficient data handling and depiction using redis queue for real-time utilization by more than 75 agencies.

IIIT-Delhi | April 2015

Smart Glasses

Prof. Alexander Fell

- \cdot Created a prototype to help blind people understand text and allow them to identify people they know.
- \cdot Selected as top 10 projects of the year and was showcased at the Delhi Mini-Maker Faire.

HONORS

Qualcomm Fellowship India - Finalist	2022
Full scholarship from advisors at CMU	2020
Robotics Institute Summer Scholar (35 selected from ~ 800 applicants)	2018
FICCI Scholarship, CMU	2018
GSoC Internship	2018
Dean's List, IIIT-Delhi	2017
Secured 99.7 th percentile among 1.5 million students in JEE Mains Examination	2015
ACTIVITIES	
Reviewer Artificial Intelligence Journal (AIJ)	August 2022 - Present
Teaching Assistant Principles of Autonomy and Decision Making - MIT	August 2022 - Present
Graduate Research Assistant Model-Based Embedded and Robotics Systems Group - MIT CSAIL Research G	August 2021 - Present roup
Graduate Research Assistant Intelligent Coordination and Logistics Laboratory - CMU Research Group	August 2019 - August 2021
RISS Admissions Committee CMU	January 2020 - March 2020
Undergraduate Researcher Laboratory for Computational Social Systems - IIIT-Delhi Research Group	August 2017 - May 2019
Undergraduate Researcher Precog - IIIT-Delhi Research Group	August 2016 - May 2019
Teaching Assistant Advanced Programming - IIITD	August 2017

INVITED TALKS

Planning under Uncertainty for Joint-Task Execution	October 2020
NASA HOME STRI	Pittsburgh, PA
Computationally Scalable Bayesian Inference Framework	June 2020
Rapid Flow Technologies	Pittsburgh, PA

Analysis of DSRC accuracy for pedestrian localization Hi-tech Robotics Systemz Ltd.

SKILLS

Programming Languages	Python, C, C++
Tools and Technologies	ROS, Pytorch, Keras, HCLIB, CUDA, Git
	OpenCV, Docker
Languages	English (Fluent), Hindi (Native), Telugu (Native)